
Complete Local Search for Propositional Satisfiability

Hai Fang
Department of Computer Science

Yale University
New Haven, CT 06520-8285
hai.fang@yale.edu

Wheeler Ruml
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304
ruml@parc.com

Abstract

Algorithms based on following local gradient information are
surprisingly effective for certain classes of constraint satis-
faction problems. Unfortunately, previous local search algo-
rithms are notoriously incomplete: They are not guaranteed to
find a feasible solution if one exists and they cannot be used to
determine unsatisfiability. We present an algorithmic frame-
work for complete local search and discuss in detail an instan-
tiation for the propositional satisfiability problem (SAT). The
fundamental idea is to use constraint learning in combination
with a novel objective function that converges during search
to a surface without local minima. Although the algorithm
has worst-case exponential space complexity, we present em-
pirical results on challenging SAT competition benchmarks
that suggest that our implementation can perform as well
as state-of-the-art solvers based on more mature techniques.
Our framework suggests a range of possible algorithms lying
between tree-based search and local search.

Introduction
Algorithms for constraint satisfaction problems have tradi-
tionally been divided into two classes: those that are based
on a systematic tree-structured search and those that use a
repair-based local search scheme. Algorithms that explore
a tree containing all possible variable assignments can im-
plicitly prove that a problem is unsatisfiable by traversing
the entire tree without finding a feasible solution. Methods
based on repairing an initially infeasible solution typically
follow a local gradient function and do not record which as-
signments have been visited and which remain untried. Such
methods are therefore incomplete: There is no finite time
within which they are guaranteed to find a satisfying assign-
ment if one exists. They will fail to terminate on unsatisfi-
able problems and are not guaranteed to solve a satisfiable
problem. Given the surprising effectiveness of local search
methods in practice, there is great interest in understanding
how tree-based and repair-based methods can be hybridized
and in whether it might be possible to design a complete lo-
cal search algorithm (Selman, Kautz, & McAllester, 1995;
Kautz & Selman, 2003).

In this paper, we will show that it is indeed feasible to
record information reflecting the past history of a gradient-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

based search and to use that information to prove the search
complete. Although our basic framework applies to any
finite-domain constraint satisfaction problem, we will fo-
cus in this paper on propositional satisfiability (SAT). In this
problem, one must determine whether it is possible to find
a satisfying assignment to the variables of a Boolean for-
mula that is presented in conjunctive normal form—a con-
junction of clauses, each of which is the disjunction of one
or more literals, where a literal is an instance of a variable
or its negation. Each clause thus forms a constraint that dis-
allows certain assignments. Many other problems can be
translated into SAT, including STRIPS planning, graph col-
oring, test pattern generation, logic synthesis, equivalence
checking, and model checking.

Our approach is based on using a novel objective function
to compute the local gradient. When a local minimum is
reached, we generate new implied clauses from the current
formula. This can be done in many different ways, including
resolution. As we discuss in detail below, the new clauses
dynamically change the objective function. This process in-
crementally smooths the search space. We provide a guar-
antee that when all possible implied clauses have been gen-
erated there will be no local minima left. Although this ap-
proach suffers from worst-case exponential space complex-
ity, in practice our implementation usually either finds a sat-
isfying assignment or generates the empty clause well before
all implied clauses have been generated.

After presenting our framework for complete local search,
we will discuss our instantiation of the scheme for SAT. We
then demonstrate the performance of our prototype imple-
mentation on challenging benchmarks from the 2003 SAT
competition. The results indicate that the guarantee of com-
pleteness costs little in overall performance: Our solver sur-
passes all local search solvers from the competition and per-
forms comparably to the best local search solver known.

The Framework
An outline of our approach is given in Figure 1. As in most
local search algorithms for SAT, the search proceeds by iter-
atively toggling the value of a single variable in the current
assignment. Unlike many other local search schemes, ours
does not fundamentally depend on randomness. The search
moves to a neighboring assignment only if it is strictly better
according to the current objective function (steps 3–4). If no



CompleteLocalSearch(φ)
1. α← generate-initial-assignment(φ)
2. while α does not satisfy φ do
3. if the best neighbor α′ is better than α
4. α← α′

5. else
6. γ ← generate-implied-clause(φ,α)
7. if γ is the empty clause
8. return unsatisfiable
9. else
10. φ← φ ∧ γ
11. return α

Figure 1: A framework for complete local search.

adjacent assignment is better, we have reached a local min-
imum (step 5). A new implied clause is then derived from
the current formula (step 6). The clause generator must al-
ways generate a new implied clause in finite time, but any
procedure that meets this criterion can be used. The gener-
ator need not use the current assignment when constructing
a new clause, although doing so may improve performance.
(We will discuss clause generation at length below.) If the
empty clause can be derived, the instance is unsatisfiable,
otherwise the formula is augmented with the new clause,
thereby implicitly changing the objective function.

The objective function compares two assignments on the
basis of the clauses that they each violate. It depends cru-
cially on the lengths of the violated clauses. Although this
novel formulation may seem a little strange, it will be im-
portant in ensuring the completeness of the search. More
formally, let φα denote those clauses of formula φ that are
violated by assignment α. If φ is over n variables, letD(φα)
be the tuple 〈dn, . . . , d0〉, where di is the number of clauses
of length i that are violated by α. Given the current formula
φ, an assignment α′ is better than another assignment α if
D(φα′ ) is lexicographically earlier than D(φα). That is to
sayD(φα′) must have a smaller entry at the leftmost position
where the two tuples differ. This might occur, for instance,
because the longest clause violated by α′ is shorter than the
longest clause violated by α. Note that as new clauses of
various lengths are added to the formula during the search
process, the relative superiority of different assignments can
change.

The algorithm is clearly sound: Because the new clauses
that are added to the formula do not change the set of satis-
fying assignments, any assignment that satisfies the current
formula and is returned (steps 2 and 11) would have satisfied
the original formula. Assuming the clause generator termi-
nates, the search will terminate because there are only a fi-
nite number of possible implied clauses (≤ 3n, in fact) and
there are only a finite number of strictly improving steps the
search can make with a fixed objective function, as would be
obtained once all clauses were generated. Of course, SAT is
NP-complete (Garey & Johnson, 1991) and our scheme has
worst-case exponential time complexity. What is perhaps
less obvious is that the algorithm is complete.

Completeness
To show that the algorithm is complete, we need only con-
sider the situation in which all possible implied clauses have
already been generated. (Of course, in practice we hope to
find a model or generate the empty clause well before this.)
We will use φ∗ to denote this implication closure of the orig-
inal formula φ. If the formula were unsatisfiable, the empty
clause would have been generated, so we need only consider
the case of a satisfiable formula. We need to show that there
are no local minima when using the objective function spec-
ified above on φ∗. In other words, a neighboring assignment
α′ that is closer to a solution than the current assignment α
will necessarily appear more attractive.

To prove this, we will first need a few helpful supporting
ideas. In the traditional view of SAT, each clause excludes a
family of states from the solution set. We explore an alter-
native view of this phenomenon: Each solution excludes the
clauses that are incompatible with it from φ∗.

Let U denote the set of all clauses that can be formed us-
ing variables appearing in φ and let φ− denote those clauses
in U that do not appear in φ∗. We can describe the relation-
ship between φ− and partial solutions of φ precisely:
Lemma 1 A clause γ = l1 ∨ · · · ∨ lk appears in φ− if and
only if the corresponding negated partial assignment γ =
{l1, . . . , lk} is part of some solution of φ.
Proof: A clause γ appears in the closure φ∗ if and only if γ
is not part of any solution of φ. Therefore, γ is not in φ∗ iff
γ is part of some solution. If γ is not in φ∗, it must be in φ−.
�

Next, we need to note a special property of the objective
function:
Lemma 2 For any assignment α, the componentwise addi-
tionD(φ∗

α
) +D(φ−

α
) will yield the same constant tuple.

Proof: Note that D(φ∗

α) +D(φ−

α) = D(Uα). But D(Uα)
does not depend on α. There are 2i

(

n

i

)

possible clauses of
length i on n variables. Any complete assignment to n vari-
ables will satisfy exactly one of the two possible literals for
each variable and thus will violate exactly 1/2i of all pos-
sible clauses of length i. So the number of possible clauses
of length i that will be violated will be exactly

(

n

i

)

and the
tupleD(φ∗

α)+D(φ−

α) will always equal the binomial dis-
tribution. �

Now we can consider the objective function on neigh-
boring assignments and show that there are no local optima
when φ has expanded to its closure:
Theorem 1 For any unsatisfying assignment α and satisfi-
able formula φ, any neighbor α′ that is closer to the near-
est solution will be better than α according to the objective
function on φ∗.
Proof: The intuition here is that as we step closer and closer
to the nearest solution, larger and larger implied clauses will
always become satisfied. For the proof, φ− is simpler to
deal with than φ∗, so we will proceed by showing that α′ is
strictly worse than α with respect to φ−. Lemma 2 will then
give us the opposite result for φ∗.

Without loss of generality, assume that α is of the
form {l1, . . . , ln}, the nearest solution α∗ is of the form



NeighborhoodResolution(φ,α)
1. foreach violated clause γ1, oldest first
2. foreach literal l in γ1, in random order
3. foreach clause γ2 critically satisfied by l, oldest first
4. γ3 ← resolve γ1 and γ2

5. if γ3 6∈ φ then return γ3

6. return α

Figure 2: A resolution-based implicate generator.

{l1, . . . , lk, lk+1, . . . , ln}, and α′ is {l1, . . . , ln−1, ln}. We
first examine D(φ−

α). Each clause in φ−

α has the form
li1 ∨ . . . ∨ lir

, since it is violated by α. By Lemma 1,
we know that the corresponding {li1 , . . . , lir

} are partial
solutions. Since α∗ is the nearest solution, {l1, . . . , lk}
must be the longest such partial solution, and therefore all
clauses in φ−

α
must have length less than or equal to k. So

D(φ−

α) = 〈0, . . . , 0, dk, . . . , d0〉.
We will now show that D(φ−

α′) is worse. Note that
l1∨. . .∨lk∨ln is a clause that will be violated by α′. Because
its corresponding negated partial assignment {l1, . . . , lk, ln}
is a subset of α∗, by Lemma 1 this clause is also in φ−.
ThereforeD(φ−

α′) will be non-zero at the entry for clauses
of length k + 1, making it worse than D(φ−

α). Since
D(φ∗

α)+D(φ−

α) is a constant (Lemma 2), this means that
D(φ∗

α′) is better than D(φ∗

α). �

We have shown that our complete local search framework
is indeed complete provided that the full implication clo-
sure of the original formula is eventually generated. At that
point, the fitness landscape will have no local minima and
the search procedure will head directly to the nearest solu-
tion. (If two neighbors are equally promising, random tie-
breaking can be used to choose between them.) We might
hope, however, that by choosing new clauses carefully, we
can often avoid generating most of the closure while still
benefiting from the smoothing effect.

An Instantiation
Within this complete local search framework, many differ-
ent algorithms can be developed. The most important choice
is probably the method of generating new clauses. As long
as it eventually generates all implied clauses, the search is
guaranteed to be complete (Theorem 1), but the choice of
method can greatly influence the efficiency of the resulting
algorithm. For example, generating long clauses violated
by the current assignment can quickly cause changes in the
objective function, allowing escape from a local minimum.
However, such specific clauses may not be useful during
subsequent search. For unsatisfiable instances, a bias toward
short clauses may be preferred, in an attempt to generate the
empty clause quickly. This also minimizes the size of the
expanding formula. The most promising technique we have
evaluated so far is based on resolution.

Neighborhood Resolution
In resolution, clauses such as x ∨ C1 and x ∨ C2 are com-
bined to yield C1 ∨ C2. Neighborhood resolution (Cha &

Iwama, 1996) refers to the special case in which there is ex-
actly one variable that appears positively in one clause and
negatively in the other. This guarantees that the result will
not be rendered useless by the presence of x ∨ x. The par-
ticular variable and clauses that are used can be decided in
many ways. In our current implementation (Figure 2), we
select a random literal from the oldest violated clause (that
is, whose status changed longest ago). We then select the
oldest satisfied neighboring clause that depends crucially on
the negation of that literal for its satisfaction. In the exceed-
ingly rare case in which a new resolvent cannot be gener-
ated, the clause corresponding to the negation of the cur-
rent assignment is returned. In either case, the new clause
is guaranteed to be violated by the current assignment and
is therefore potentially helpful for escaping from the current
minimum.

To prove that this procedure can always generate a new
clause, and thus will preserve the completeness of the
search, we need only check its behavior at local minima:

Theorem 2 Let α be a local minimum on a formula φ which
already contains the negation of α (call it α). If φ does not
already contain the empty clause, then neighborhood reso-
lution will generate a new resolvent.

Proof: We will proceed via the contrapositive, showing
that if additional resolvents cannot be generated, the empty
clause is present. Let Di(φα) be the number of clauses of
length i in φ that are violated by α. Note that the clause α
has length n, so Dn(φα) = 1, its maximum possible value.
Because α is a local minimum, Dn(φα′ ) = 1 for all neigh-
boring assignments α′. This means that the clauses α′ must
also be in φ. A chain reaction is thus initiated. If neighbor-
hood resolution cannot generate any new resolvents, then
φ must already contain the n clauses of length n − 1 that
neighborhood resolution can generate from resolving α with
the various α′. These shorter clauses are subsets of α, so
Dn−1(φα) = n. Again, because we are at a local mini-
mum, Dn−1(φα′ ) = n for all α′. For each α′, all n clauses
resulting from dropping a single literal from α′ must be in
φ. The chain reaction continues, with neighborhood resolu-
tion providing all

(

n

i

)

subsets of α of length i and the local
minimum property implying the presence of the additional
clauses necessary for producing still shorter clauses. Con-
tinuing in this manner, we see that the empty clause must
already be present in φ. �

Other Features
Although the algorithm described above yields a respectable
SAT solver, additional techniques can be incorporated into
the algorithm to improve performance. To allow a meaning-
ful comparison to existing, highly-tuned solvers, the imple-
mentation evaluated below included these standard enhance-
ments:

unit propagation Whenever a unit clause is generated, the
corresponding variable can be set and eliminated. Adding
this feature improved performance on handmade and in-
dustrial instances (these benchmarks are described be-
low).



equivalent literal detection If l1 ∨ l2 and l1 ∨ l2 are both
present, l2 can be replaced everywhere by l1. This limited
form of equivalency reasoning seemed to improve perfor-
mance on parity checking and many industrial instances.

resolution between similar clauses If two clauses differ
only in the polarity of a single literal, their resolvent is
generated immediately. In our implementation, it is easy
to check for similar clauses in a hashtable, and obtain-
ing these shortened clauses seemed to provide a slight im-
provement.

appropriate data structures Violated and critical clauses
are held in doubly-linked lists, allowing constant-time re-
moval as well as tracking clause age (for clause selec-
tion during resolution). The critical clause lists are in-
dexed by variable. For each variable, two hashtables hold
the clauses in which it occurs positively and negatively.
To choose the best neighbor during hill-climbing, the im-
provement resulting from flipping each variable is calcu-
lated explicitly. For efficiency, variables whose attractive-
ness can only have decreased are not checked. After each
resolution, only the variables involved are checked.

Empirical Evaluation
To assess whether complete local search is of practical as
well as theoretical interest, we tested our implementation
using the instances and protocol of the 2003 SAT Compe-
tition (Simon, 2003; Hoos & Stützle, 2000). This allows
us to compare against many state-of-the-art solvers using a
broad collection of challenging and unbiased instances. The
996 competition instances are divided into three categories:
random problems (produced by a parameterized stochastic
generator), handmade problems (manually crafted to be both
small and difficult), and industrial problems (encodings of
problems from planning, model checking, and other appli-
cations). Within each category, closely related instances
are grouped into a single ‘series’. To minimize the effect
of implementation details and emphasize breadth of ability,
solvers are ranked according to how many different series
they can solve, where a series is considered solved if at least
one of its instances is solved. Solvers incorporating random-
ness are given three separate tries on each instance. Prizes
are awarded for best performance in each category, with sep-
arate awards for performance on all instances and perfor-
mance on satisfiable instances only. Prize-winning solvers
from the 2002 competition were automatically entered in
2003. In the competition, each solver was allocated 900 sec-
onds on an Athlon 1800+ with 1Gb RAM (a 2.4Ghz Pen-
tium 4 was used for instances in the random family). We
attempted to match these conditions in our tests, normaliz-
ing across machines using the DIMACS dfmax utility (and
SPECint2000 results for the Athlon) and imposing a 900Mb
memory limit.1

Table 1 presents the performance of complete local search
(CLS) together with many state-of-the-art solvers, both in

1In cases in which we did not use a 2.4Ghz Pentium 4, we used
724 seconds on a 2.0 GHz Xeon, and 557 seconds on a 2.6Ghz
Xeon.

terms of the number of series solved and the number of in-
stances. All data except those for CLS and RSAPS were
copied from the published competition results. The first
four rows represent all of the local search solvers from the
competition. Unitwalk (Hirsh & Kojevnikov, 2003) was the
best 2003 entrant on satisfiable random instances. Results
of CLS are presented both with and without unsatisfiable in-
stances. RSAPS (Hutter, Tompkins, & Hoos, 2002), while
not entered in the competition, represents one of the best
current local search solvers, if not the best.2 It uses a clause
weighting scheme that is carefully engineered for efficiency.
The remaining seven rows represent complete tree search-
based solvers, and include the other prize winners from 2003
and 2002.3 In several cases, the same solver was best both
overall and on only satisfiable instances.

The results convincingly demonstrate that complete local
search is of practical interest. CLS surpasses all of the lo-
cal search-based solvers from the 2003 competition on the
primary competition measure, number of series solved, both
overall and in each category, as well as on the number of
instances solved overall. Even considering satisfiable in-
stances alone, CLS solved more random series and a similar
number of series overall. Had it entered the competition,
CLS would have garnered best solver on satisfiable random
instances. Its ability to prove unsatisfiability allows it to sub-
stantially surpass other local search solvers on industrial in-
stances. Compared with RSAPS, CLS solved fewer random
series but more series overall and a comparable number of
instances overall.

Overall, CLS behaves more like a local search solver than
a tree-based solver. It does better on satisfiable random in-
stances than any tree-based solver, but it does not exhibit the
overall performance of the best tree-based solvers.

The time CLS takes per flip increases as the size of the
clause database grows during search. Techniques developed
for other solvers, such as subsumption testing and forgetting
irrelevant clauses, may be useful for managing this growth
and reducing the time per flip.

Randomness is exploited by the algorithm in three places:
to construct the initial assignment, to break ties between
equally promising neighbors during hill-climbing, and to se-
lect variables to resolve on.

Related Work
Constraint learning is a popular technique in tree-based
search (Bayardo Jr. & Schrag, 1996), where it has been
shown to increase the formal power of the proof sys-
tem (Beame, Kautz, & Sabharwal, 2003). Usually, only
clauses that are short or relevant to the current portion of
the search tree are retained (Moskewicz et al., 2001). In

2Tests on smaller instances (Hutter, Tompkins, & Hoos, 2002)
suggest that RSAPS surpasses the performance of Novelty+ (Hoos,
1999) and ESG (Schuurmans, Southey, & Holte, 2001), and there-
fore also WalkSAT (Selman, Kautz, & Cohen, 1994) and DLM (Wu
& Wah, 2000). We ran saps-1.0 ourselves with default parame-
ters and the -reactive (self-tuning) flag.

3Oksolver was not run on handmade or industrial problems in
the 2003 competition.



Random Handmade Industrial Total
ser. inst. ser. inst. ser. inst. ser. inst.

amvo 0 0 1 10 1 2 2 12
qingting 9 73 3 12 4 17 16 102

saturn 14 127 7 29 3 22 24 178
unitwalk 15 139 5 20 4 15 24 174 best sat. random ’03

cls 16 121 9 22 14 66 39 209
cls (sat only) 16 121 5 17 2 15 23 153

rsaps 21 177 8 26 1 9 30 212
kcnf 25 163 16 51 6 17 47 231 best random ’03

satzoo1 11 67 21 102 31 124 63 293 best handmade ’03
forklift 11 53 17 63 34 143 62 259 best industrial ’03

oksolver 16 96 na na na na na na best random ’02
berkmin561 10 54 16 65 32 136 58 255 best sat. handmade ’02

zchaff 10 53 17 67 29 115 56 235 best industrial, handmade ’02
limmat 5 24 14 52 28 114 47 190 best sat. industrial ’02

Table 1: Performance on the 2003 SAT Competition instances: number of series and instances solved.

local search, techniques that associate a weight with each
clause and change those weights over time can simulate
the effect of adding duplicate clauses (Morris, 1993; Shang
& Wah, 1997). The RSAPS solver takes this approach.
Such methods can be seen as attempting to approximate
the ideal search surface that complete local search builds.
Explicitly adding implied clauses was suggested by Cha &
Iwama (1996). They showed how implied clauses could pro-
vide improvements over duplicate clauses (see also Yokoo,
1997), although their method does not guarantee complete-
ness. Morris (1993) noted that explicitly recording and in-
creasing the cost of visited states can force an algorithm to
eventually solve a satisfiable instance, although his scheme
cannot easily detect unsatisfiability.

There have been several recent proposals for hybrids
of local and tree-based search. To our knowledge, none
achieves completeness without embedding the local search
in a tree-like framework. For example, both Mazure, Saı̈s,
& Grégoire (1998) and Eisenberg & Faltings (2003) propose
schemes in which local search is used to determine a vari-
able ordering for subsequent tree search.

The weak-commitment search strategy of Yokoo (1994)
and the Learn-SAT algorithm of Richards & Richards (2000)
are perhaps the previous proposals most similar to complete
local search. In these closely related procedures, only the
first branch of a search tree is explored. Variable choice
is guided in part by a current infeasible assignment. At
the first dead-end, a new clause is learned and the search
starts again from the root. As in our approach, this no-
good learning confers completeness. However, both weak-
commitment search and Learn-SAT are fundamentally con-
structive, tree-like, search methods. Many variables can
change their values between one construction episode and
the next, and unit propagation lets one variable’s value di-
rectly dictate the values of several others. In contrast, com-
plete local search is based on hill-climbing with gradient in-
formation, always changing exactly one variable assignment
at a time. In this sense, the steps of the search are restricted
to ‘local’ changes to one part of the assignment. As in our

experiments, Richards & Richards did not find the worst-
case exponential space complexity of their method a hin-
drance in practice. Unfortunately, we cannot easily compare
Learn-SAT with complete local search because all published
results are in terms of constraint checks and node counts,
which are meaningless for CLS, and its source code does
not seem to be available on-line.

Possible Extensions
There are many ways in which this work might be extended.
Other strategies to generate new clauses may be useful. Gen-
eral resolution is powerful, but by itself doesn’t suggest
which clauses should be resolved. Two interesting alter-
natives to neighborhood resolution are conflict analysis and
clause splitting. By conflict analysis, we mean a procedure
that incrementally constructs a new assignment, exploiting
unit propagation as in a tree search. When the partial as-
signment cannot be extended, the corresponding clause can
be learned (Bayardo Jr. & Schrag, 1996). Such a procedure
can perform the equivalent of many resolution steps, and can
take advantage of variable choice heuristics developed for
tree search algorithms. While this is the major search step
in weak-commitment search and Learn-SAT, it can also be
used simply as a clause generation technique in support of
local search. Our preliminary experience with such a proce-
dure is promising, but not yet as successful as with neigh-
borhood resolution.

In clause splitting, a violated clause C gives rise to C∨xi

and C ∨ xi, where xi doesn’t already appear in the clause.
Whichever new clause is violated can be usefully learned,
and provides a succinct way to make the current minimum
less attractive. This method can be made complete when
used with resolution between similar clauses, which we
mentioned above.

If extended effort in one part of the search space does not
yield a solution, there is no reason why the search cannot
be restarted at another assignment. As long as the learned
clauses are retained, completeness will not be sacrificed.



Preliminary evidence suggests that this approach could re-
sult in substantial gains. Using a greedy heuristic to gener-
ate the initial assignment might also improve performance,
especially when used with a restarting strategy.

It should be possible to use a variation of complete local
search to find all possible models of a formula. When a
solution α is found, the negated clause α can be added to the
formula to force the search to another nearby solution, until
eventually the formula becomes unsatisfiable.

Our framework applies directly to other constraint satis-
faction problems. The size of the closure is increased, and
constraint generation may become more complex, but the
completeness proof still holds.

Conclusions
We have presented the first local search algorithm that
has been proved complete. This answers one of the ma-
jor outstanding problems in propositional reasoning and
search (Selman, Kautz, & McAllester, 1995; Kautz & Sel-
man, 2003). The algorithm is fundamentally based on fol-
lowing gradient information, rather than relying on an ex-
ternal tree search for completeness. Constraint learning en-
sures completeness, but does not restrict the motion of the
search. Although the completeness proof assumes that all
implied clauses have been generated, this is far from nec-
essary in practice. By testing an implementation of the
method on challenging SAT instances, we have shown that
the completeness guarantee does not hinder the empirical
performance of the algorithm compared to other local search
solvers. On the contrary, due in part to its ability to prove
unsatisfiability, complete local search surpassed all the lo-
cal search solvers from the 2003 SAT competition and per-
formed comparably to RSAPS, one of the best local search
solvers known.

Complex resolution and constraint learning techniques
can easily be incorporated into our framework, raising the
possibility of mimicking much of the reasoning done by cur-
rent tree-based solvers. Complete local search suggests that
the division between tree-based search and local search may
be much more porous than commonly believed.

Acknowledgments
We thank Jimmy H. M. Lee, Valeria de Paiva, and Johan de
Kleer for helpful discussions and comments on a prelimi-
nary draft of this work, Wen Xu for help improving the C
implementation of CLS, and Dave Tompkins for providing
the source code for RSAPS. Much of this research was done
while the first author was an intern at PARC. This work was
supported in part by the DARPA NEST program under con-
tract F33615-01-C-1904.

References
Bayardo Jr., R. J., and Schrag, R. 1996. Using CSP

look-back techniques to solve exceptionally hard SAT in-
stances. In Proceedings of CP-96, 46–60.

Beame, P.; Kautz, H.; and Sabharwal, A. 2003. Under-
standing the power of clause learning. In Proceedings of
IJCAI-03, 1194–1201.

Cha, B., and Iwama, K. 1996. Adding new clauses for faster
local search. In Proceedings of AAAI-96, 332–337.

Eisenberg, C., and Faltings, B. 2003. Making the breakout
algorithm complete using systematic search. In Proceed-
ings of IJCAI-03, 1374–1375.

Garey, M. R., and Johnson, D. S. 1991. Computers and
Intractability. New York: W.H. Freeman and Co.

Hirsh, E. A., and Kojevnikov, A. 2003. UnitWalk: A new
SAT solver that uses local search guided by unit clause
elimination. In Proceedings of SAT-02, 35–42.

Hoos, H. H., and Stützle, T. 2000. SATLIB: An online
resource for resesarch on SAT. In Gent, I.; van Maaren,
H.; and Walsh, T., eds., SAT 2000. IOS Press. 283–292.

Hoos, H. H. 1999. On the run-time behavior of stochastic
local search algorithms for SAT. In AAAI-99, 661–666.

Hutter, F.; Tompkins, D. A. D.; and Hoos, H. H. 2002. Scal-
ing and probabilistic smoothing: Efficient dynamic local
search for SAT. In Proceedings of CP ’02, 233–248.

Kautz, H., and Selman, B. 2003. Ten challenges redux:
Recent progress in propositional reasoning and search. In
Proceedings of CP ’03, 1–18.

Mazure, B.; Saı̈s, L.; and Grégoire, E. 1998. Boosting com-
plete techniques thanks to local search methods. Annals
of Mathematics and Artificial Intelligence 22:319–331.

Morris, P. 1993. The breakout method for escaping from
local minima. In Proceedings of AAAI-93, 40–45.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: engineering an efficient SAT
solver. In Proceedings of DAC-01, 530–535.

Richards, T., and Richards, B. 2000. Nonsystematic search
and no-good learning. J. Auto. Reasoning 24(4):483–533.

Schuurmans, D.; Southey, F.; and Holte, R. C. 2001. The
exponentiated subgradient algorithm for heuristic boolean
programming. In Proceedings of IJCAI-01, 334–341.

Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise strate-
gies for improving local search. In AAAI-94, 337–343.

Selman, B.; Kautz, H.; and McAllester, D. 1995. Ten chal-
lenges in propositional reasoning and search. In Proceed-
ings of IJCAI-95, 50–54.

Shang, Y., and Wah, B. W. 1997. A discrete Lagrangian-
based global-search method for solving satisfiability
problems. Journal of Global Optimization 10:1–40.

Simon, L. 2003. The SAT-03 contest results site.
http://www.lri.fr/˜simon/contest03/results/.

Wu, Z., and Wah, B. 2000. An efficient global-search strat-
egy in discrete lagrangian methods for solving hard satis-
fiability problems. In Proceedings of AAAI-00, 310–315.

Yokoo, M. 1994. Weak-commitment search for solving con-
straint satisfaction problems. In Proc. AAAI-94, 313–318.

Yokoo, M. 1997. Why adding more constraints makes a
problem easier for hill-climbing algorithms: Analyzing
landscapes of CSPs. In Proceedings of CP-97, 356–370.


