CS 758/858: Algorithms

Assembling a Swarm

Connectivity

http://www.cs.unh.edu/~ruml/cs758

Assembling a Swarm

- Challenges
- Not
- Making a Shape
- Assembly FSA
- Proofs

Connectivity

Assembling a Swarm of Robots

Assembling a Swarm
Challenges
■ Not
Making a Shape
Assembly FSA
Proofs

Connectivity

decentralized, robust, local communication and sensing

cost, manufacturing, operations

- coordinated behavior
- goal-oriented behavior, planning

Not Swarm Robotics

- Challenges
- Not
- Making a Shape
- Assembly FSA
- Proofs

Connectivity

Making a Shape

Assem	oling a	a Swarm

- Challenges
- Not
- Making a Shape
- Assembly FSA
- Proofs

Connectivity

http://science.sciencemag.org/content/suppl/2014/08/13/3 assumes: local comm, rough distance from sender, roughly holonomic motion, given shape, 4 special seeds

- 1. place seed robots
- 2. compute gradient
- 3. edge following (enter shape)
- 4. stop before exiting or when nestled at gradient

need: determine gradient, follow edge, localization

Assembly FSA

			_	
Assem	bling	а	Swarm	

- Challenges
- Not
- Making a Shape
- Assembly FSA
- Proofs

Connectivity

idle

start-move: no nearby moving robots and I have smallest id of nearby idle robots

move-out

enter-shape: inside and boundary is no longer close **move-in:** 2 possible successors

leave-shape: inside but boundary is at my radius

- stop-out
- **or, gradient:** about to edge-follow new robot with different gradient than previous

stop-in

Proofs

Assembling a Swarm
■ Challenges
■ Not
Making a Shape
Assembly FSA

Proofs

Connectivity

- 1. if there is a robot-sized place within shape that is reachable, a mobile robot will stop inside shape
- 2. robots will form 'ribbons' without gaps
- 3. when no robots can join, shape cannot fit more robots
- 4. with sufficient robots, shape will be filled

Assembling a Swarm

Connectivity

Keeping
Connected

■ Algorithm

EOLQs

A Mobile but Connected Swarm

Wheeler Ruml (UNH)

Class 26, CS 758 – 8 / 11

Assembling a Swarm	https://www.youtube.com/watch?v=AJG4tYs2GU0
Connectivity Keeping Connected Algorithm 	
■ EOLQs	

, ,

Algorithm

Assembling a Swarm
Connectivity
Keeping
Connected

Algorithm

EOLQs

reach target locations while preserving connectivity roles: root, worker, connector, spare assumes can estimate relative position of sender

- 1. loop:
- 2. make tree from root to (or from) workers
- 3. workers try to grow toward targets
- 4. recruit spares as additional connectors
- 5. re-select root (improves efficiency)

EOLQs

Assembling a Swarm

Nope!

Connectivity

Keeping
Connected

■ Algorithm

EOLQs

Wheeler Ruml (UNH)

Class 26, CS 758 – 11 / 11