CS 758/858: Algorithms

http://www.cs.unh.edu/~ruml/cs758 **Red-Black Trees** Deletion Fixup 1 handout: slides

- Red-Black Trees
- BST Deletion
- Single Child
- Immed. Succ.
- Deep Succ.
- Break

Deletion Fixup

Red-Black Trees

Wheeler Ruml (UNH)

Red-Black Trees
Red-Black Trees
■ BST Deletion
■ Single Child

■ Deep Succ.

Break

Deletion Fixup

node: data, left, right, parent, color

- 1. every node is either red or black
- 2. the root is black
- 3. (consider nil to be black)
- 4. both children of a red node are black
- 5. from any node, all paths to leaves have the same 'black height'

■ Red-Black Trees

- BST Deletion
- Single Child
- Immed. Succ.

Deep Succ.

Break

Deletion Fixup

4 cases of delete(z):

- 1. no left child, or no kids: substitute right subtree at parent.
- 2. no right child: substitute left subtree at parent.
- 3. successor y is z's right child:
 - (a) substitute y for z
 - (b) attach z's left subtree as y's left subtree
- 4. successor y is deeper:
 - (a) substitute y's right subtree for y
 - (b) attach z's right subtree as y's right subtree
 - (c) as above, substitute y for z
 - (d) as above, attach z's left subtree as y's left subtree

What if it's a red-black tree?

Cases 1 and 2: Single Child

- Red-Black Trees
- Red-Black Trees
- BST Deletion
- Single Child
- Immed. Succ.
- Deep Succ.
- Break

Deletion Fixup

- 1. every node is either red or black
- 2. the root is black
- 3. (consider nil to be black)
- 4. both children of a red node are black
- 5. from any node, all paths to leaves have the same 'black height'

deleting z with single child x

1. x takes z's place

Cases 1 and 2: Single Child

- Red-Black Trees
- Red-Black Trees
- BST Deletion
- Single Child
- Immed. Succ.
- Deep Succ.
- Break

Deletion Fixup

- 1. every node is either red or black
- 2. the root is black
- 3. (consider nil to be black)
- 4. both children of a red node are black
- 5. from any node, all paths to leaves have the same 'black height'

deleting z with single child x

- 1. x takes z's place
- 2. book uses y for z for short code
- 3. if y (= z) was black, we have 'extra black' at x, so call fixup routine at x

Case 3: Two Children, Successor is Child

- Red-Black Trees
- Red-Black Trees
- BST Deletion
- Single Child
- Immed. Succ.
- Deep Succ.
- Break

Deletion Fixup

- 1. every node is either red or black
- 2. the root is black
- 3. (consider nil to be black)
- 4. both children of a red node are black
- 5. from any node, all paths to leaves have the same 'black height'

deleting z, successor y is right child

- 1. y takes z's place and color
- 2. attach z's left subtree as y's left subtree

Case 3: Two Children, Successor is Child

- Red-Black Trees
- Red-Black Trees
- BST Deletion
- Single Child
- Immed. Succ.
- Deep Succ.
- Break

Deletion Fixup

- 1. every node is either red or black
- 2. the root is black
- 3. (consider nil to be black)
- 4. both children of a red node are black
- 5. from any node, all paths to leaves have the same 'black height'

deleting z, successor y is right child

- 1. y takes z's place and color
- 2. attach z's left subtree as y's left subtree
- 3. if y was black, we need 'extra black' at y's right child x, so call fixup routine at x

Case 4: Two Children, Successor is Deeper

Red-Black ⁻	Trees
------------------------	-------

- Red-Black Trees
- BST Deletion
- Single Child
- Immed. Succ.
- Deep Succ.

Break

Deletion Fixup

deleting $\boldsymbol{z}\text{, successor }\boldsymbol{y}\text{ is deep down}$

- 1. substitute y's right child x for y
- 2. attach z's right subtree as y's right subtree as in simpler case:
- 3. y takes z's place and color
- 4. attach z's left subtree as y's left subtree
- 5. if y was black, we need 'extra black' at x, so call fixup routine at x

Red-Black Trees

- Red-Black Trees
- BST Deletion
- Single Child
- Immed. Succ.
- Deep Succ.
- Break

Deletion Fixup

asst 4: write verifier

Deletion Fixup

- Fix-up Loop
- Case 1
- Case 2
- Case 3
- Case 4
- Complexity
- Searching
- EOLQs

Red-Black Tree Deletion Fixup

Red-Black Trees	need to find a
Deletion Fixup	
Case 1 Case 2	when x red of
 Case 3 Case 4 Complexity Searching EOLQs 	x is non-root assume x is a Must have sit 4 cases:
	1. w is red 2. w and bo 3. w is black 4. w is black

a red node to make black

r root, color black and terminate

black node. left child (other cases symmetric). oling w, since x holds 'extra blackness'.

- oth its children are black
- k, its right child is black, its left child is red
- k, its right child is red

fix-up loop invariant: all properties hold if 'extra black' at x is considered, heights of fringe (greek) nodes preserved

Red-Black Trees

Deletion Fixup

- Fix-up Loop
- Case 1
- Case 2
- Case 3
- Case 4
- Complexity
- Searching
- EOLQs

case 1: w is red. so parent and children must be black.

solution:

- 1. rotate and recolor to get black sibling (moves red horizontally)
- 2. fall through to case 2, 3, or 4

Red-Black Trees

Deletion Fixup

- Fix-up Loop
- Case 1
- Case 2
- Case 3
- Case 4
- Complexity
- Searching
- EOLQs

case 2: w and both its children are black

solution:

- 1. color w red. subtree at parent now 'black-balanced'.
- 2. move x's blackness (and w's) up the tree
- 3. recur at parent

if from case 1, \boldsymbol{x} now red, so will terminate

Red-Black Trees

Deletion Fixup

- Fix-up Loop
- Case 1
- Case 2
- Case 3
- Case 4
- Complexity
- Searching
- EOLQs

case 3: w is black, its right is black, left is red

solution:

- 1. rotate right and move red over to right child
- 2. fall through to case 4

solution:

Red-Black Trees

case 4: \boldsymbol{w} is black, its right child is red

Deletion Fixup

- Fix-up Loop
- Case 1
- Case 2
- Case 3
- Case 4Complexity
- Searching
- EOLQs

- 1. rotate and recolor to annihilate red with x's black
- 2. set x to root to force termination

Complexity

Red-Black	Trees
-----------	-------

Deletion Fixup

- Fix-up Loop
- Case 1
- Case 2
- Case 3
- Case 4
- Complexity
- Searching
- EOLQs

finding successor is $O(\lg n)$

one fixup iteration is constant time

fixup loops only when moving up, so is $O(\lg n)$

how many rotations are performed?

Searching

Red-Black Trees	Structure	Find	Insert	Delete
Deletion Fixup	List (unsorted)			
■ Fix-up Loop■ Case 1	List (sorted)			
Case 2	Array (unsorted)			
■ Case 3■ Case 4	Array (sorted)			
Complexity	Heap			
EOLQs	Hash table			
	Binary tree (unbalanced)			
	Binary tree (balanced)			

EOLQs

Red-Black Trees

- Deletion Fixup
- Fix-up Loop
- Case 1
- Case 2
- Case 3
- Case 4
- Complexity
- Searching
- EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out. *Thanks!*