
CS 758/858: Algorithms

Red-Black Trees

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 1 / 17

http://www.cs.unh.edu/~ruml/cs758

1 handout: slides



Red-Black Trees

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 2 / 17



Red-Black Trees

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 3 / 17

node: data, left, right, parent, color

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’



Plain Binary Tree Deletion

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 4 / 17

4 cases of delete(z):

1. no left child, or no kids: substitute right subtree at parent.
2. no right child: substitute left subtree at parent.
3. successor y is z’s right child:

(a) substitute y for z
(b) attach z’s left subtree as y’s left subtree

4. successor y is deeper:

(a) substitute y’s right subtree for y
(b) attach z’s right subtree as y’s right subtree
(c) as above, substitute y for z
(d) as above, attach z’s left subtree as y’s left subtree

What if it’s a red-black tree?



Cases 1 and 2: Single Child

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 5 / 17

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’

deleting z with single child x

1. x takes z’s place



Cases 1 and 2: Single Child

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 5 / 17

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’

deleting z with single child x

1. x takes z’s place
2. book uses y for z for short code
3. if y (= z) was black, we have ‘extra black’ at x, so call fixup

routine at x



Case 3: Two Children, Successor is Child

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 6 / 17

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’

deleting z, successor y is right child

1. y takes z’s place and color
2. attach z’s left subtree as y’s left subtree



Case 3: Two Children, Successor is Child

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 6 / 17

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’

deleting z, successor y is right child

1. y takes z’s place and color
2. attach z’s left subtree as y’s left subtree
3. if y was black, we need ‘extra black’ at y’s right child x, so

call fixup routine at x



Case 4: Two Children, Successor is Deeper

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 7 / 17

deleting z, successor y is deep down

1. substitute y’s right child x for y
2. attach z’s right subtree as y’s right subtree

as in simpler case:
3. y takes z’s place and color
4. attach z’s left subtree as y’s left subtree
5. if y was black, we need ‘extra black’ at x, so call fixup

routine at x



Break

Red-Black Trees

■ Red-Black Trees

■ BST Deletion

■ Single Child

■ Immed. Succ.

■ Deep Succ.

■ Break

Deletion Fixup

Wheeler Ruml (UNH) Class 7, CS 758 – 8 / 17

■ asst 4: write verifier



Red-Black Tree Deletion Fixup

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 9 / 17



Deletion Fix-up Loop

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 10 / 17

need to find a red node to make black

when x red or root, color black and terminate

x is non-root black node.
assume x is a left child (other cases symmetric).
Must have sibling w, since x holds ‘extra blackness’.
4 cases:

1. w is red
2. w and both its children are black
3. w is black, its right child is black, its left child is red
4. w is black, its right child is red

fix-up loop invariant: all properties hold if ‘extra black’ at x is
considered, heights of fringe (greek) nodes preserved



Case 1

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 11 / 17

case 1: w is red. so parent and children must be black.

solution:

1. rotate and recolor to get black sibling (moves red
horizontally)

2. fall through to case 2, 3, or 4



Case 2

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 12 / 17

case 2: w and both its children are black

solution:

1. color w red. subtree at parent now ‘black-balanced’.
2. move x’s blackness (and w’s) up the tree
3. recur at parent

if from case 1, x now red, so will terminate



Case 3

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 13 / 17

case 3: w is black, its right is black, left is red

solution:

1. rotate right and move red over to right child
2. fall through to case 4



Case 4

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 14 / 17

case 4: w is black, its right child is red

solution:

1. rotate and recolor to annihilate red with x’s black
2. set x to root to force termination



Complexity

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 15 / 17

finding successor is O(lgn)

one fixup iteration is constant time

fixup loops only when moving up, so is O(lgn)

how many rotations are performed?



Searching

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 16 / 17

Structure Find Insert Delete

List (unsorted)
List (sorted)
Array (unsorted)
Array (sorted)
Heap
Hash table
Binary tree (unbalanced)
Binary tree (balanced)



EOLQs

Red-Black Trees

Deletion Fixup

■ Fix-up Loop

■ Case 1

■ Case 2

■ Case 3

■ Case 4

■ Complexity

■ Searching

■ EOLQs

Wheeler Ruml (UNH) Class 7, CS 758 – 17 / 17

For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!


	CS 758/858: Algorithms
	Red-Black Trees
	Red-Black Trees
	Plain Binary Tree Deletion
	Cases 1 and 2: Single Child
	Case 3: Two Children, Successor is Child
	Case 4: Two Children, Successor is Deeper
	Break

	Red-Black Tree Deletion Fixup
	Deletion Fix-up Loop
	Case 1
	Case 2
	Case 3
	Case 4
	Complexity
	Searching
	EOLQs


