
CS 758/858: Algorithms

Turing Machines

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 1 / 23

http://www.cs.unh.edu/~ruml/cs758



Turing Machines

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 2 / 23



What is ‘information processing’?

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 3 / 23

Take some input, process it, render some output.

Would like an abstract model for this, independent of realization.

No homunculi! ‘Process’ steps must be clear and unambiguous.



Modeling of Computing

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 4 / 23

■ finite-state machine: regular langauges
■ pushdown automaton: context-free languages
■ Turing machine: computable languages



Alan Mathison Turing (1912-1954)

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 5 / 23



The set up

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 6 / 23

A Turing machine has:

■ a processor that can be in one of a finite number of states
■ an infinite tape of symbols (from finite alphabet)
■ a head that reads and writes the tape, one symbol at a time

... ba b a ...

q8 q0

q5
q4

q2

q1

q3

q6

q7



The set up

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 6 / 23

A Turing machine has:

■ a processor that can be in one of a finite number of states
■ an infinite tape of symbols (from finite alphabet)
■ a head that reads and writes the tape, one symbol at a time

... ba b a ...

q8 q0

q5
q4

q2

q1

q3

q6

q7

The processor looks at

1. the symbol under the head
2. its current state

and then

3. writes a symbol (could be same as old)
4. moves the head left, right, or stays still
5. puts itself in a next state (could be same as old)



In summary

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 7 / 23

A Turing machine is:

1. a finite alphabet of possible tape symbols (including ✷)
2. an infinite tape of symbols (initially ✷, except for input)
3. a starting head position
4. a finite set of possible processor states
5. a starting processor state
6. a set of ‘final’ processor states
7. a set of transition rules for the processor

One of the first (and still most popular) abstract models of
computation.



Extensions

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 8 / 23

■ tape infinite in only one direction
■ multiple tapes at once
■ multiple heads at once
■ 2-D ”tape”

All polytime related!



Church-Turing Thesis

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 9 / 23

Any ‘effective computing procedure’ can be
represented as a Turing machine.



Other models

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 10 / 23

equivalent to Turing machines (compute time may vary):

■ Post rewriting systems (grammars)
■ recursive functions
■ λ calculus
■ parallel computers
■ cellular automata
■ certain artificial neural networks (most are weaker)
■ quantum computers

There must be something substantive about this!



Universal machines

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 11 / 23

Can represent Turing machine as a table

state, symbol → symbol, action, state
state, symbol → symbol, action, state

...

Can write the table on an input tape

Universal machine: input is machine and machine’s input

‘Stored program’ computation



Minsky’s universal machine

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 12 / 23



Undecidability

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 13 / 23



The halting problem

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 14 / 23

H: given M and its input i, does M halt on i?



The halting problem

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 14 / 23

H: given M and its input i, does M halt on i?

deciding H: output Y or N
accepting H: halting (= Y ) or computing forever (= N)

Any universal machine can accept H.
But can a machine decide it?



A simpler problem

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 15 / 23

H: given M and its input i, does M halt on i?

SH: given M , does M halt on its own encoding?

But can a machine decide this simpler problem?

Reminder:

deciding H: output Y or N
accepting H: halting (= Y ) or computing forever (= N)



A simpler problem

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 15 / 23

H: given M and its input i, does M halt on i?

SH: given M , does M halt on its own encoding?

ISH: given M , does M not halt on its own encoding?

‘Can a machine decide SH?’ is fundamentally the same as
‘Can a machine decide ISH?’ which is easier than
‘Can a machine accept ISH?’

Reminder:

deciding H: output Y or N
accepting H: halting (= Y ) or computing forever (= N)



A paradox

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 16 / 23

H: given M and its input i, does M halt on i?

SH: given M , does M halt on its own encoding?

ISH: given M , does M not halt on its own encoding?

Let’s assume we have a machine S that accepts ISH.

What happens when S is given itself as input? Does it halt?

Reminder:

deciding H: output Y or N
accepting H: halting (= Y ) or computing forever (= N)



A paradox

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 16 / 23

H: given M and its input i, does M halt on i?

SH: given M , does M halt on its own encoding?

ISH: given M , does M not halt on its own encoding?

Let’s assume we have a machine S that accepts ISH.

What happens when S is given itself as input? Does it halt?

If S halts on S, the definition of ISH means S doesn’t halt on S.

If S doesn’t halt on S, that means that S does halt on S.

Reminder:

deciding H: output Y or N
accepting H: halting (= Y ) or computing forever (= N)



A paradox

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 16 / 23

H: given M and its input i, does M halt on i?

SH: given M , does M halt on its own encoding?

ISH: given M , does M not halt on its own encoding?

Let’s assume we have a machine S that accepts ISH.

What happens when S is given itself as input? Does it halt?

If S halts on S, the definition of ISH means S doesn’t halt on S.

If S doesn’t halt on S, that means that S does halt on S.

Contradiction!

Reminder:

deciding H: output Y or N
accepting H: halting (= Y ) or computing forever (= N)



Implication: undecidability

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 17 / 23

Assuming we have a machine S that accepts ISH leads to a
contradiction.

So no such S can exist.

ISH is ‘not Turing-acceptable.’
Thus certainly not decidable.



Implication: undecidability

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 17 / 23

Assuming we have a machine S that accepts ISH leads to a
contradiction.

So no such S can exist.

ISH is ‘not Turing-acceptable.’
Thus certainly not decidable.

SH is undecidable. (Otherwise we could decide ISH.)



Implication: undecidability

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 17 / 23

Assuming we have a machine S that accepts ISH leads to a
contradiction.

So no such S can exist.

ISH is ‘not Turing-acceptable.’
Thus certainly not decidable.

SH is undecidable. (Otherwise we could decide ISH.)

H is harder and thus certainly undecidable.



Implication: undecidability

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 17 / 23

Assuming we have a machine S that accepts ISH leads to a
contradiction.

So no such S can exist.

ISH is ‘not Turing-acceptable.’
Thus certainly not decidable.

SH is undecidable. (Otherwise we could decide ISH.)

H is harder and thus certainly undecidable.

No Turing machine can compute H.

By Church-Turing, no procedure for H exists in any medium.

There are problems for which no algorithm can exist.



Break

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 18 / 23

■ asst 12
■ asst 13
■ ‘swarm’ algorithms: metaheuristics or robots?



Rice’s Theorem

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 19 / 23

The function computed by a Turing machine is the mapping
from its input (string of symbols initially on the tape) to its
output (string of symbols on its tape when it halts)

Theorem: Any non-trivial property of the function computed by
a Turing machine is undecidable.

Therefore, we cannot decide anything ‘non-trivial’ about the
function computed by a Turing machine.

Henry Gordon Rice, Professor of Math at UNH in the 1950s!



Proof Sketch

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 20 / 23

Example: does a given TM compute the add 1 function?

Assume machine isAdd1() can decide whether or not its input is
a Turing machine that computes the add 1 function.

Now, given M and input x, we can decide if M(x) halts:

■ Make a temporary machine T (i) = {M(x); return i+ 1}
■ Now, test if T satisfies the isAdd1 property: isAdd1 (T )

Can now decide the halting problem:

■ If M(x) halted, then isAdd1 (T ) says “Yes” because T (i)
computed i+ 1

■ If M(x) never halts, then T (i) never halts and isAdd1 (T )
must say “No”

So IsAdd1() cannot exist.



Summary

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 21 / 23

Turing machines

■ model what we mean by computation, independent of
hardware

■ are not something you want to program much yourself
■ seem to be able to express any algorithm
■ provide an example of stored-program interpretation
■ illustrate limits on what can be computed
■ provide the foundation for computational complexity



Coping with NP-Completeness

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 22 / 23

■ find tractable special case
■ run only on small inputs
■ heuristic optimal algorithm that’s usually fast
■ heuristic non-optimal algorithm that’s always fast

◆ if bounded suboptimality: ‘approximation algorithm’



EOLQs

Turing Machines

Undecidability

■ Halting problem

■ A simpler problem

■ A paradox

■ Undecidability

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 23 / 23

For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!


	CS 758/858: Algorithms
	Turing Machines
	What is `information processing'?
	Modeling of Computing
	Alan Mathison Turing (1912-1954)
	The set up
	In summary
	Extensions
	Church-Turing Thesis
	Other models
	Universal machines
	Minsky's universal machine

	Undecidability
	The halting problem
	A simpler problem
	A paradox
	Implication: undecidability
	Break
	Rice's Theorem
	Proof Sketch
	Summary
	Coping with NP-Completeness
	EOLQs


