http://www.cs.unh.edu/~ruml/cs758

1 handout: slides
NP-Completeness

Terms
Interchangability
Reductions
NPC Proofs
C-SAT is in NP
C-SAT is NP-Hard
Break

NP-Completeness
optimization vs decision: if opt were easy, decision would be too

P: solvable in polynomial time
NP: \exists certificate verifiable in polynomial time
NP-Hard: as hard as any problem in NP (via polytime reduction)
NP-Complete: NP-Hard and in NP

reduce a to b: $a \rightarrow b$ in polytime, decide b

b hard by reduction from a: if $a \rightarrow b$ in polytime and b polytime, could solve a
Theorem: If $B \leq_P A$ for some $B \in \text{NPC}$, then A is NP-Hard.

Since B is NPC, we have $\forall C \in \text{NP}, C \leq_P B$. Since $B \leq_P A$, then $C \leq_P A$ which shows A is NP-Hard.

If also $A \in \text{NP}$, then since $A \in \text{NP}$, we have $A \in \text{NPC}$.
Reductions

NP-Completeness
- Terms
- Interchangability

Reductions
- NPC Proofs
- C-SAT is in NP
- C-SAT is NP-Hard
- Break

SAT

CIRCUIT-SAT

SAT

3-CNF SAT

CLIQUE

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

TSP
To prove some problem A is NP-Complete:

1. Prove $A \in NP$
2. Pick a known NP-Complete problem B
3. Find a translation of instances of B into instances of A
4. Show that translated A version is accepted if and only if the original B version should be accepted.
5. Prove that the reduction runs in polynomial time.
Circuit-SAT is in NP

Circuit-SAT: is circuit satisfiable? (otherwise, can be removed)

Certificate is value for every wire.
Simply check that each gate is computed correctly and output is true.
Circuit-SAT is NP-Hard

Need to construct reduction f from any $L \in \text{NP}$. Given input $x \in L$, resulting circuit $C \in \text{Circuit-SAT}$ iff $x \in L$. We’ll make C so it’s SAT iff $\exists y$ s.t. verification algorithm $A(x, y)$ for L gives true. Intuition: for input y, run $A(x, y)$.

Let $n = |x|$ and $T(n) = O(n^k)$ be bound on A’s running time. Let M be a circuit for a stored-program computer (including PC and storage). String $T(n)$ of them together to form C''. C is C'' with input hardwired to program for A and input x, and output hardwired to result of A. Input to C is y.

Iff y exists, C is satisfiable, so we have a reduction. A is constant size and uses poly storage. M is poly size and needs poly steps to run A. y is poly sized. So C'' and C have size polynomial in n and can be constructed in polynomial time.
asst 12: can use any NPC problem from chapter for reduction
NP-Completeness

SAT
- NPC Proofs
- Reduction
- 3-CNF SAT
- Reductions
- EOLQs
To prove some problem A is NP-Complete:

1. Prove $A \in NP$
2. Pick a known NP-Complete problem B
3. Find a translation of instances of B into instances of A
4. Show that translated A version is accepted if and only if the original B version should be accepted.
5. Prove that the reduction runs in polynomial time.
Consider formula with n variables and m connectives.

SAT \in NP: given variables assignments, evaluate formula.

SAT is NP-Hard: Reduction from Circuit-SAT. Basic translation fails on shared subcircuits. Instead, use one variable for each wire and one clause per gate. Combine clauses with \land and include $\land x_0$ (output). SAT iff wires in circuit have legal values yielding true.
3-CNF SAT

CNF where each clause has exactly 3 literals. Aka 3-SAT.

3-CNF SAT \in NP: given variables assignments, evaluate formula.

3-CNF SAT is NP-Hard: Reduction from SAT. Construct expression tree and convert to binary branching. Assign each node a variable. Form clause for each internal node’s variable, eg: $y_3 \leftrightarrow (y_1 \lor y_2)$

Clauses will have at most 3 literals.

Convert each clause to CNF: form complete truth table, form DNF for false rows, negate, convert to CNF (push \neg in using DeMorgan).

For each binary clause $(l_1 \lor l_2)$, convert to $(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)$.

For each unit clause (l), convert to $(l_1 \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q)$.

Each step preserves satisfiability and is polynomial time.
Reductions

NP-Completeness

SAT
- NPC Proofs
- Reduction
- 3-CNF SAT
- Reductions
- EOLQs

CIRCUIT-SAT
 ↓
 SAT
 ↓
 3-CNF SAT
 ↓
 CLIQUE
 ↓
 SUBSET-SUM
 ↓
 VERTEX-COVER
 ↓
 HAM-CYCLE
 ↓
 TSP
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!