http://www.cs.unh.edu/~ruml/cs758
NP-Completeness

- Terms
- Interchangability
- Reductions
- NPC Proofs
- C-SAT is in NP
- C-SAT is NP-Hard
- Break

NP-Completeness
optimization vs decision: if opt were easy, decision would be too

P: solvable in polynomial time

NP: ∃ certificate verifiable in polynomial time

NP-Hard: as hard as any problem in NP (via polytime reduction)

NP-Complete: NP-Hard and in NP

reduce a to b: $a \rightarrow b$ in polytime, decide b

b hard by reduction from a: if $a \rightarrow b$ in polytime and b polytime, could solve a
The Power of Reduction

Theorem: If \(B \leq_P A \) for some \(B \in \text{NPC} \), then \(A \) is NP-Hard.

Since \(B \) is NPC, we have \(\forall C \in \text{NP}, C \leq_P B \). Since \(B \leq_P A \), then \(C \leq_P A \) which shows \(A \) is NP-Hard.

If also \(A \in \text{NP} \), then since \(A \in \text{NP} \), we have \(A \in \text{NPC} \).
Reductions

NP-Completeness
- Terms
- Interchangability
- Reductions
 - NPC Proofs
 - C-SAT is in NP
 - C-SAT is NP-Hard
 - Break

SAT

CIRCUIT-SAT
 ↓
 SAT
 ↓
 3-CNF SAT
 ↓
 CLIQUE SUBSET-SUM
 ↓
 VERTEX-COVER
 ↓
 HAM-CYCLE
 ↓
 TSP
To prove some problem A is NP-Complete:

1. Prove $A \in NP$
2. Pick a known NP-Complete problem B
3. Find a translation of instances of B into instances of A
4. Show that translated A version is accepted if and only if the original B version should be accepted.
5. Prove that the reduction runs in polynomial time.
Circuit-SAT is in NP

Circuit-SAT: is circuit satisfiable? (otherwise, can be removed)

Certificate is value for every wire.
Simply check that each gate is computed correctly and output is true.
Circuit-SAT is NP-Hard

Need to construct reduction \(f \) from any \(L \in \text{NP} \). Given input \(x \in L \), resulting circuit \(C \in \text{Circuit-SAT} \) iff \(x \in L \). We’ll make \(C \) so it’s SAT iff \(\exists y \) s.t. verification algorithm \(A(x, y) \) for \(L \) gives true. Intuition: for input \(y \), run \(A(x, y) \).

Let \(n = |x| \) and \(T(n) = O(n^k) \) be bound on \(A \)’s running time.

Let \(M \) be a circuit for a stored-program computer (including PC and storage). String \(T(n) \) of them together to form \(C'' \).

\(C \) is \(C'' \) with input hardwired to program for \(A \) and input \(x \), and output hardwired to result of \(A \). Input to \(C \) is \(y \).

Iff \(y \) exists, \(C \) is satisfiable, so we have a reduction.

\(A \) is constant size and uses poly storage. \(M \) is poly size and needs poly steps to run \(A \). \(y \) is poly sized. So \(C'' \) and \(C \) have size polynomial in \(n \) and can be constructed in polynomial time.
NP-Completeness
■ Terms
■ Interchangability
■ Reductions
■ NPC Proofs
■ C-SAT is in NP
■ C-SAT is NP-Hard
■ Break

SAT

- asst 12
- wildcard
To prove some problem A is NP-Complete:

1. Prove $A \in NP$
2. Pick a known NP-Complete problem B
3. Find a translation of instances of B into instances of A
4. Show that translated A version is accepted if and only if the original B version should be accepted.
5. Prove that the reduction runs in polynomial time.
Consider formula with \(n \) variables and \(m \) connectives.

\[\text{SAT} \in \text{NP}: \text{given variables assignments, evaluate formula.} \]

\[\text{SAT is NP-Hard: Reduction from Circuit-SAT. Basic translation fails on shared subcircuits.} \]

\[\text{Instead, use one variable for each wire and one clause per gate.} \]
\[\text{Combine clauses with} \ \wedge \ \text{and include} \ \wedge \ x_0 \ (\text{output}). \]
\[\text{SAT iff wires in circuit have legal values yielding true.} \]
3-CNF SAT

CNF where each clause has exactly 3 literals. Aka 3-SAT.

3-CNF SAT ∈ NP: given variables assignments, evaluate formula.

3-CNF SAT is NP-Hard: Reduction from SAT. Construct expression tree and convert to binary branching.
Assign each node a variable.
Form clause for each internal node’s variable, eg: \(y_3 \leftrightarrow (y_1 \lor y_2) \)
Clauses will have at most 3 literals.
Convert each clause to CNF: form complete truth table, form DNF for false rows, negate and push \(\neg \) inward (using DeMorgan) to get CNF
For each binary clause \((l_1 \lor l_2)\), convert to \((l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)\).
For each unit clause \((l)\), convert to \((l_1 \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q)\).
Each step preserves satisfiability and is polynomial time.
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!