CS 758/858: Algorithms

NP-Completeness

NP

http://www.cs.unh.edu/~ruml/cs758

- Problems
- Exponentials
- **■** Terms
- Why
- Break

NP

NP-Completeness

Problems, Not Algorithms

P vs NPC vs EXPTIME

- shortest path vs longest path
- Euler tour (each edge) vs hamiltonian cycle (each vertex)
- minimum spanning tree vs shortest total all-pairs path length spanning tree
- spanning tree vs vertex cover
- maximum flow vs minimum edge-cost flow (meeting demand)
- minimum cut vs maximum cut
- maximum bipartite matching vs minimum maximal matching
- addition vs subset sum
- 2-CNF satisfiability vs 3-CNF
- interval scheduling vs job shop scheduling
- value of move in checkers, Go

Exponentials

NP-Completeness

■ Problems

■ Exponentials

■ Terms

■ Why

■ Break

NP

if 1 step = 1 μ second:

	20	40	60	
\overline{n}	.00002 sec	.00004 sec	.00006 sec	
n^2	.0004 sec	.0016 sec	.0036 sec	
n^3	.008 sec	.064 sec	.216 sec	
n^5	3.2 sec	1.7 min	13 min	
2^n	1.0 sec	12.7 days	366 cent	
3^n	58 min	3855 cent	$10^{13}~{\rm cent}$	

(non-)effect of CPU speed:

	curr size	$100 \times$	$1000 \times$
\overline{n}	N	100N	1000N
n^2	N	10N	31.6N
n^3	N	4.64N	10N
n^5	N	2.5N	3.98N
2^n	N	N + 6.64	N + 9.97
3^n	N	N + 4.19	N + 6.29

Terms

NP-Completeness

■ Problems
■ Exponentials
■ Terms
■ Why
■ Break
NP

tractable: polynomial in (non-unary) input

P: solvable in polynomial time

NP: verifiable in polynomial time (eg, blockchain, cloud computing)

NP-Hard: as hard as any problem in NP (via polytime reduction)

NP-Complete: NP-Hard and in NP

optimization vs decision: if opt were easy, decision would be too reduce a to b: $a \to b$ in polytime, decide b, \to decision for a b hard by reduction from a: if $a \to b$ in polytime and b polytime, could solve a

- Problems
- **■** Exponentials
- **■** Terms

■ Why

■ Break

NP

"I can't find an efficient algorithm, I guess I'm just too dumb."

- Problems
- **■** Exponentials
- **■** Terms

■ Why

■ Break

NP

"I can't find an efficient algorithm, because no such algorithm is possible!"

- Problems
- **■** Exponentials
- **■** Terms

■ Why

■ Break

NP

"I can't find an efficient algorithm, but neither can all these famous people."

Break

- asst 12
- final exam confirmed for Wed Dec 11 3:30-5:30pm in N121
- wildcard vote!

NP

- Definitions
- NP-Completeness
- EOLQs

NP

Definitions

NP-Completeness

NP

■ Definitions

- NP-Completeness
- **■** EOLQs

 $P = \{L \subseteq \{0,1\}^* : \exists \text{ algorithm that decides } L \text{ in poly time } \}$

A(x,y) verifies L iff for any input $x \in L \exists$ certificate y that proves $x \in L$ and $\not\exists$ certificate iff $x \not\in L$

 $\begin{aligned} \mathsf{NP} &= \{L \subseteq \{0,1\}^* : \exists \text{ algorithm } A(x,y) \text{ that can use certificate } y \text{ with } |y| = O(|x|^c) \text{ to verify } L \text{ in polynomial time } \} \end{aligned}$

 $P \neq NP$?

 $\operatorname{co-NP} = \{L \subseteq \{0,1\}^* : \overline{L} \in \operatorname{NP} \ \}.$

 $NP \neq co-NP$? eg $L \in NP \Rightarrow \overline{L} \in NP$?

NP-Completeness

NP

■ Definitions

■ NP-Completeness

■ EOLQs

polynomial-time reducible: $L_1 \leq_P L_2$ iff \exists

polynomial-time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for all $\{0,1\}^*$, $x \in L_1$ iff $f(x) \in L_2$.

L is NP-Complete iff $L \in \mathsf{NP}$ and $\forall L' \in \mathsf{NP}$, $L' \leq_P L$

EOLQs

NP-Completeness

NP

- Definitions
- NP-Completeness
- EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!