http://www.cs.unh.edu/~ruml/cs758

1 handout: slides
NP-Completeness
Problems, Not Algorithms

NP-Completeness

- Problems
- Exponentials
- Terms
- Why
- Break

Non-P-Completeness

P vs NPC vs EXPTIME

- shortest path vs longest path
- Euler tour (each edge) vs hamiltonian cycle (each vertex)
- minimum spanning tree vs shortest total path length spanning tree
- spanning tree vs vertex cover
- maximum flow vs minimum edge-cost flow (meeting demand)
- minimum cut vs maximum cut
- maximum bipartite matching vs minimum maximal matching
- addition vs subset sum
- 2-CNF satisfiability vs 3-CNF
- interval scheduling vs job shop scheduling
- value of move in checkers, Go
if 1 step = 1 \(\mu \text{second} \):

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>40</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>.00002 sec</td>
<td>.00004 sec</td>
<td>.00006 sec</td>
</tr>
<tr>
<td>(n^2)</td>
<td>.0004 sec</td>
<td>.0016 sec</td>
<td>.0036 sec</td>
</tr>
<tr>
<td>(n^3)</td>
<td>.008 sec</td>
<td>.064 sec</td>
<td>.216 sec</td>
</tr>
<tr>
<td>(n^5)</td>
<td>3.2 sec</td>
<td>1.7 min</td>
<td>13 min</td>
</tr>
<tr>
<td>(2^n)</td>
<td>1.0 sec</td>
<td>12.7 days</td>
<td>366 cent</td>
</tr>
<tr>
<td>(3^n)</td>
<td>58 min</td>
<td>3855 cent</td>
<td>(10^{13}) cent</td>
</tr>
</tbody>
</table>

(non-)effect of Moore’s Law:

<table>
<thead>
<tr>
<th></th>
<th>curr size</th>
<th>100(\times)</th>
<th>1000(\times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(N)</td>
<td>100(N)</td>
<td>1000(N)</td>
</tr>
<tr>
<td>(n^2)</td>
<td>(N)</td>
<td>10(N)</td>
<td>31.6(N)</td>
</tr>
<tr>
<td>(n^3)</td>
<td>(N)</td>
<td>4.64(N)</td>
<td>10(N)</td>
</tr>
<tr>
<td>(n^5)</td>
<td>(N)</td>
<td>2.5(N)</td>
<td>3.98(N)</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(N)</td>
<td>(N + 6.64)</td>
<td>(N + 9.97)</td>
</tr>
<tr>
<td>(3^n)</td>
<td>(N)</td>
<td>(N + 4.19)</td>
<td>(N + 6.29)</td>
</tr>
</tbody>
</table>
tractable: polynomial in (non-unary) input
P: solvable in polynomial time
NP: verifiable in polynomial time
NP-Hard: as hard as any problem in NP (via polytime reduction)
NP-Complete: NP-Hard and in NP

optimization vs decision: if opt were easy, decision would be too
reduce a to b: $a \rightarrow b$ in polytime, decide b

b hard by reduction from a: if $a \rightarrow b$ in polytime and b polytime, could solve a
Why

```
“I can’t find an efficient algorithm, I guess I’m just too dumb.”
```
“I can’t find an efficient algorithm, because no such algorithm is possible!”
“I can’t find an efficient algorithm, but neither can all these famous people.”
Break

- asst 10
- asst 11
- office hours
NP-Completeness

NP

Definitions
NP-Completeness
EOLQs
Definitions

NP-Completeness

NP

 Definitions
 NP-Completeness
 EOLQs

P = \{ L \subseteq \{0, 1\}^* : \exists \text{ algorithm that decides } L \text{ in poly time } \}

A verifies L iff for any input \(x \in L \) \(\exists \) certificate y that proves \(x \in L \) and \(\exists \) certificate iff \(x \notin L \)

NP = \{ L \subseteq \{0, 1\}^* : \exists \text{ algorithm } A(x, y) \text{ that can use certificate } y \text{ with } |y| = O(|x|^c) \text{ to verify } L \text{ in polynomial time } \}

P \neq NP?

co-NP = \{ L \subseteq \{0, 1\}^* : \overline{L} \in NP \}.

NP \neq co-NP? eg \(L \in NP \Rightarrow \overline{L} \in NP \)?
polynomial-time reducible: \(L_1 \leq_P L_2 \) iff \(\exists \) polynomial-time computable function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) such that for all \(\{0, 1\}^* \), \(x \in L_1 \) iff \(f(x) \in L_2 \).

\(L \) is NP-Complete iff \(L \in \text{NP} \) and \(\forall L' \in \text{NP}, \ L' \leq_P L \)
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!