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O(g(n)) = {f(n) : there exist positive constants c, n0

such that f(n) ≤ cg(n) for all n ≥ no}

ignore constant factors
ignore ‘start-up costs’
upper bound

We can upper-bound f
(except perhaps at start) by
scaling g by a constant.

eg, running time of
10n2 − 5n = O(n2)

n0

f(n)

c·g(n)

f(n) = O(g(n))
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10n2 + 5n = Θ(n2)

10n lg
n

e
= O(n lgn)
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For n numbers in the range 0 to k:

1. for x from 0 to k
2. count[x] ← 0
3. for each input number x
4. increment count[x]
5. for x from 0 to k
6. do count[x] times
7. emit x
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For n numbers in the range 0 to k:

1. for x from 0 to k O(k)
2. count[x] ← 0
3. for each input number x O(n)
4. increment count[x]
5. for x from 0 to k O(k) times around loop
6. do count[x] times iterates O(n) times total
7. emit x O(1) each time

O(k + n+ k + n) = O(2n+ 2k) = O(n+ k) 6= O(n lgn)
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Input array contains n records with keys in the range 0 to k − 1
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Input array contains n records with keys in the range 0 to k − 1

1. set count[x] to number of items with key = x
2. set pos[x] to total number of keys < x
3. for each input record r (in order)
4. write r in output array at position pos[key of r]
5. increment pos[key of r]

Complexity?
Invariants?
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How to sort one million records?
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How to sort one trillion 4-bit integers?
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How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

For n numbers with d digits (each digit has k values):

1. for i from 0 to d

2. stable sort on digit in place i from right
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What’s the invariant in radix sort?
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What’s the space complexity?
What’s the time complexity?
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Why not implemented more?
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■ everyone receiving piazza notifications?
■ book access?

see book for example proofs
■ asst 1: agate, valgrind, submit, happy TA
■ no hardcopy submission
■ probabilistic grading
■ schedule: asst 1, 2, 3
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for i from 2 to n
move A[i] earlier until in place

worse case?
best case?
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‘divide and conquer’: divide, combine, and conquer

Mergesort(A, i, j)
1. if i ≥ j, done
2. k ← (i+ j)/2
3. Mergesort(A, i, k)
4. Mergesort(A, k + 1, j)
5. merge A[i..k] and A[k + 1..j] into A[i..j]

how does merge work?
running time?
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divide, conquer, and combine

Quicksort(A, i, j)
1. choose pivot key x
2. partition A[i..j] into A[i..p− 1] and A[p+ 1..j]
3. if p− 1 > i then Quicksort(A, i, p− 1)
4. if j > p+ 1 then Quicksort(A, p+ 1, j)
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divide, conquer, and combine

Quicksort(A, i, j)
1. choose pivot key x
2. partition A[i..j] into A[i..p− 1] and A[p+ 1..j]
3. if p− 1 > i then Quicksort(A, i, p− 1)
4. if j > p+ 1 then Quicksort(A, p+ 1, j)

+:
entirely in-place, no allocation
often less copying than merge sort

−:
expected O(n lg n)
needs tricks to avoid worst case
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Partition(A, i, j)
1. choose pivot key p and swap into A[j]
2. x = i
3. for y = i to j − 1
4. if A[y] ≤ p
5. swap A[x] and A[y]
6. x← x+ 1
7. swap A[x] and A[j]

A: (i:) less (x:) greater (y:) unknown (j:) pivot
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What is the minimum that a sorting algorithm must do?
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What is the minimum that a sorting algorithm must do?
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binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ( 1

n
))
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√
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√
2πn(
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n
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What is the minimum that a sorting algorithm must do?
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√
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√
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n
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)n + lg(1 + Θ(
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n
))
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What is the minimum that a sorting algorithm must do?
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Stirling: n! =
√
2πn(n

e
)n(1 + Θ( 1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))

= lg
√
2π + lg

√
n+ lg(

n

e
)n + lg(1 + Θ(

1

n
))

= Θ(lg
√
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n

e
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1

n
))
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What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)
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What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
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What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ( 1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))
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√
2π + lg

√
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e
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n
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= Θ(lg
√
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n

e
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1

n
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√
n+ n lgn− n lg e)) + lg(1 + Θ(

1

n
))

= Θ(n lg n)

so comparison-based sorting takes Ω(n lg n) time
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■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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