
CS 758/858: Algorithms

Previously On...

Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 1 / 21

http://www.cs.unh.edu/~ruml/cs758

1 handout: slides

http://www.cs.unh.edu/~ruml/cs758

Previously On CS 758...

Previously On...

■ O()

■ O() Example

■ Counting Sort

Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 2 / 21

O()

Previously On...

■ O()

■ O() Example

■ Counting Sort

Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 3 / 21

O(g(n)) = {f(n) : there exist positive constants c, n0

such that f(n) ≤ cg(n) for all n ≥ no}

ignore constant factors
ignore ‘start-up costs’
upper bound

We can upper-bound f
(except perhaps at start) by
scaling g by a constant.

eg, running time of
10n2 − 5n = O(n2)

n0

f(n)

c·g(n)

f(n) = O(g(n))

O() Example

Previously On...

■ O()

■ O() Example

■ Counting Sort

Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 4 / 21

10n2 + 5n = Θ(n2)

10n lg
n

e
= O(n lgn)

Counting Sort

Previously On...

■ O()

■ O() Example

■ Counting Sort

Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 5 / 21

For n numbers in the range 0 to k:

1. for x from 0 to k
2. count[x] ← 0
3. for each input number x
4. increment count[x]
5. for x from 0 to k
6. do count[x] times
7. emit x

Counting Sort

Previously On...

■ O()

■ O() Example

■ Counting Sort

Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 6 / 21

For n numbers in the range 0 to k:

1. for x from 0 to k O(k)
2. count[x] ← 0
3. for each input number x O(n)
4. increment count[x]
5. for x from 0 to k O(k) times around loop
6. do count[x] times iterates O(n) times total
7. emit x O(1) each time

O(k + n+ k + n) = O(2n+ 2k) = O(n+ k) 6= O(n lgn)

Radix Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 7 / 21

Stable Counting Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 8 / 21

Input array contains n records with keys in the range 0 to k − 1

Stable Counting Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 8 / 21

Input array contains n records with keys in the range 0 to k − 1

1. set count[x] to number of items with key = x
2. set pos[x] to total number of keys < x
3. for each input record r (in order)
4. write r in output array at position pos[key of r]
5. increment pos[key of r]

Complexity?
Invariants?

Radix Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 9 / 21

How to sort one million records?

Radix Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 9 / 21

How to sort one million records?

How to sort one trillion 4-bit integers?

Radix Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 9 / 21

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

Radix Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 9 / 21

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

Radix Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 9 / 21

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

For n numbers with d digits (each digit has k values):

Radix Sort

Previously On...

Radix Sort

■ Stable Counting

■ Radix Sort

Analysis

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 9 / 21

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

For n numbers with d digits (each digit has k values):

1. for i from 0 to d

2. stable sort on digit in place i from right

Analysis

Previously On...

Radix Sort

Analysis

■ Correctness

■ Complexity

■ Limitations

■ Break

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 10 / 21

Correctness

Previously On...

Radix Sort

Analysis

■ Correctness

■ Complexity

■ Limitations

■ Break

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 11 / 21

What’s the invariant in radix sort?

Complexity

Previously On...

Radix Sort

Analysis

■ Correctness

■ Complexity

■ Limitations

■ Break

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 12 / 21

What’s the space complexity?
What’s the time complexity?

Limitations

Previously On...

Radix Sort

Analysis

■ Correctness

■ Complexity

■ Limitations

■ Break

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 13 / 21

Why not implemented more?

Break

Previously On...

Radix Sort

Analysis

■ Correctness

■ Complexity

■ Limitations

■ Break

More Sorts

Wheeler Ruml (UNH) Class 2, CS 758 – 14 / 21

■ everyone receiving piazza notifications?
■ book access?

see book for example proofs
■ asst 1: agate, valgrind, submit, happy TA
■ no hardcopy submission
■ probabilistic grading
■ schedule: asst 1, 2, 3

More Sorting Algorithms

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 15 / 21

Insertion Sort

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 16 / 21

for i from 2 to n
move A[i] earlier until in place

worse case?
best case?

Merge Sort

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 17 / 21

‘divide and conquer’: divide, combine, and conquer

Mergesort(A, i, j)
1. if i ≥ j, done
2. k ← (i+ j)/2
3. Mergesort(A, i, k)
4. Mergesort(A, k + 1, j)
5. merge A[i..k] and A[k + 1..j] into A[i..j]

how does merge work?
running time?

Quicksort

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 18 / 21

divide, conquer, and combine

Quicksort(A, i, j)
1. choose pivot key x
2. partition A[i..j] into A[i..p− 1] and A[p+ 1..j]
3. if p− 1 > i then Quicksort(A, i, p− 1)
4. if j > p+ 1 then Quicksort(A, p+ 1, j)

Quicksort

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 18 / 21

divide, conquer, and combine

Quicksort(A, i, j)
1. choose pivot key x
2. partition A[i..j] into A[i..p− 1] and A[p+ 1..j]
3. if p− 1 > i then Quicksort(A, i, p− 1)
4. if j > p+ 1 then Quicksort(A, p+ 1, j)

+:
entirely in-place, no allocation
often less copying than merge sort

−:
expected O(n lg n)
needs tricks to avoid worst case

Partition

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 19 / 21

Partition(A, i, j)
1. choose pivot key p and swap into A[j]
2. x = i
3. for y = i to j − 1
4. if A[y] ≤ p
5. swap A[x] and A[y]
6. x← x+ 1
7. swap A[x] and A[j]

A: (i:) less (x:) greater (y:) unknown (j:) pivot

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ(1

n
))

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ(1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ(1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))

= lg
√
2π + lg

√
n+ lg(

n

e
)n + lg(1 + Θ(

1

n
))

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ(1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))

= lg
√
2π + lg

√
n+ lg(

n

e
)n + lg(1 + Θ(

1

n
))

= Θ(lg
√
n+ n lg(

n

e
)) + lg(1 + Θ(

1

n
))

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ(1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))

= lg
√
2π + lg

√
n+ lg(

n

e
)n + lg(1 + Θ(

1

n
))

= Θ(lg
√
n+ n lg(

n

e
)) + lg(1 + Θ(

1

n
))

= Θ(lg
√
n+ n lgn− n lg e)) + lg(1 + Θ(

1

n
))

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ(1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))

= lg
√
2π + lg

√
n+ lg(

n

e
)n + lg(1 + Θ(

1

n
))

= Θ(lg
√
n+ n lg(

n

e
)) + lg(1 + Θ(

1

n
))

= Θ(lg
√
n+ n lgn− n lg e)) + lg(1 + Θ(

1

n
))

= Θ(n lg n)

Lower Bounds

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 20 / 21

What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with n! leaves has height at least lg(n!)

Stirling: n! =
√
2πn(n

e
)n(1 + Θ(1

n
))

so:
lg(n!) = lg(

√
2πn(

n

e
)n(1 + Θ(

1

n
)))

= lg
√
2π + lg

√
n+ lg(

n

e
)n + lg(1 + Θ(

1

n
))

= Θ(lg
√
n+ n lg(

n

e
)) + lg(1 + Θ(

1

n
))

= Θ(lg
√
n+ n lgn− n lg e)) + lg(1 + Θ(

1

n
))

= Θ(n lg n)

so comparison-based sorting takes Ω(n lg n) time

EOLQs

Previously On...

Radix Sort

Analysis

More Sorts

■ Insertion Sort

■ Merge Sort

■ Quicksort

■ Partition

■ Lower Bounds

■ EOLQs

Wheeler Ruml (UNH) Class 2, CS 758 – 21 / 21

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!

	CS 758/858: Algorithms
	Previously On CS 758...
	O()
	O() Example
	Counting Sort
	Counting Sort

	Radix Sort
	Stable Counting Sort
	Radix Sort

	Analysis
	Correctness
	Complexity
	Limitations
	Break

	More Sorting Algorithms
	Insertion Sort
	Merge Sort
	Quicksort
	Partition
	Lower Bounds
	EOLQs

