http://www.cs.unh.edu/~ruml/cs758

1 handout: slides
Radix Sort
Counting Sort

For \(n \) numbers in the range 0 to \(k \):

1. for \(x \) from 0 to \(k \)
2. \(\text{count}[x] \leftarrow 0 \)
3. for each input number \(x \)
4. increment \(\text{count}[x] \)
5. for \(x \) from 0 to \(k \)
6. do \(\text{count}[x] \) times
7. emit \(x \)
For n numbers in the range 0 to k:

1. for x from 0 to k \hspace{1cm} O(k)
2. count[x] \leftarrow 0
3. for each input number x \hspace{1cm} O(n)
4. increment count[x]
5. for x from 0 to k \hspace{1cm} $O(k)$ times around loop
6. do count[x] times \hspace{1cm} iterates $O(n)$ times total
7. emit x \hspace{1cm} $O(1)$ each time

$O(k + n + k + n) = O(2n + 2k) = O(n + k) \neq O(n \lg n)$
\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \text{ such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

ignore constant factors
ignore ‘start-up costs’
upper bound

We can upper-bound \(f \) (except perhaps at start) by scaling \(g \) by a constant.

eg, running time of
\[10n^2 - 5n = O(n^2) \]
10n^2 + 5n = \Theta(n^2)

10n \log \frac{n}{e} = O(n \log n)
Stable Counting Sort

Input array contains n records with keys in the range 0 to k
Input array contains n records with keys in the range 0 to k

1. set $\text{count}[x]$ to number of items with key $= x$
2. set $\text{pos}[x]$ to total number of keys $< x$
3. for each input record r (in order)
4. write r in output array at position $\text{pos}[\text{key of } r]$
5. increment $\text{pos}[\text{key of } r]$

Complexity?
Invariants?
How to sort one million records?
How to sort one million records?

How to sort one trillion 4-bit integers?
Radix Sort

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?
Radix Sort

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?
Radix Sort

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

For \(n \) numbers with \(d \) digits (each digit has \(k \) values):
How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

For n numbers with d digits (each digit has k values):

1. for i from 0 to d
2. stable sort on digit in place i from right
Analysis
What’s the invariant in radix sort?
What’s the space complexity?
What’s the time complexity?
Limitations

Why not implemented more?
everyone receiving piazza notifications?
books available?
asst 1: agate, valgrind, submit, happy Tianyi
Insertion Sort

for \(i \) from 2 to \(n \)
move \(A[i] \) earlier until in place

worse case?
better case?
Merge Sort

‘divide and conquer’: divide, conquer, combine

\[\text{Mergesort}(A, i, j) \]

1. if \(i \geq j \), done
2. \(k \leftarrow (i + j)/2 \)
3. Mergesort\((A, i, k)\)
4. Mergesort\((A, k + 1, j)\)
5. merge \(A[i..k] \) and \(A[k + 1..j] \) into \(A[i..j] \)

how does merge work?
running time?
divide, conquer, combine?

Quicksort \((A, i, j)\)
1. choose pivot key \(x\)
2. partition \(A[i..j]\) into \(A[i..p - 1]\) and \(A[p + 1..j]\)
3. if \(p - 1 > i\) then Quicksort\((A, i, p - 1)\)
4. if \(j > p + 1\) then Quicksort\((A, p + 1, j)\)
divide, conquer, combine?

Quicksort \((A, i, j)\)
1. choose pivot key \(x\)
2. partition \(A[i..j]\) into \(A[i..p-1]\) and \(A[p+1..j]\)
3. if \(p-1 > i\) then Quicksort\((A, i, p-1)\)
4. if \(j > p+1\) then Quicksort\((A, p+1, j)\)

+:
- entirely in-place, no allocation
- often less copying than merge sort

−:
- expected \(O(n \lg n)\)
- needs tricks to avoid worst case
Partition

Partition(A, i, j)
1. choose pivot key p and swap into $A[j]$
2. $x = i$
3. for $y = i$ to $j - 1$
4. if $A[y] \leq p$
5. swap $A[x]$ and $A[y]$
6. $x \leftarrow x + 1$
7. swap $A[x]$ and $A[j]$

A: (i:) less (x:) greater (y:) unknown (j:) pivot
What is the minimum that a sorting algorithm must do?
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting \(n \) items?
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with $n!$ leaves
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with $n!$ leaves has height at least $\log(n!)$
What is the minimum that a sorting algorithm must do?
How many possible outputs are there for sorting \(n \) items?

binary tree with \(n! \) leaves has height at least \(\lg(n!) \)

Stirling: \(n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)\)
What is the minimum that a sorting algorithm must do? How many possible outputs are there for sorting n items?

A binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling: $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n}))$

So:

$$\lg(n!) = \lg\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n}))\right)$$
What is the minimum that a sorting algorithm must do?
How many possible outputs are there for sorting n items?

binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling: $n! = \sqrt{2\pi n\left(\frac{n}{e}\right)^n (1 + \Theta\left(\frac{1}{n}\right))}$

so:

$$\lg(n!) = \lg\left(\sqrt{2\pi n\left(\frac{n}{e}\right)^n (1 + \Theta\left(\frac{1}{n}\right))}\right)$$

$$= \lg \sqrt{2\pi} + \lg n + \lg\left(\frac{n}{e}\right)^n + \lg(1 + \Theta\left(\frac{1}{n}\right))$$
What is the minimum that a sorting algorithm must do? How many possible outputs are there for sorting \(n \) items?

A binary tree with \(n! \) leaves has height at least \(\log(n!) \)

Stirling: \(n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta \left(\frac{1}{n} \right) \right) \)

so:

\[
\log(n!) = \log \left(\sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta \left(\frac{1}{n} \right) \right) \right) \\
= \log \sqrt{2\pi} + \log \sqrt{n} + \log \left(\frac{n}{e} \right)^n + \log \left(1 + \Theta \left(\frac{1}{n} \right) \right) \\
= \Theta \left(\log \sqrt{n} + n \log \left(\frac{n}{e} \right) \right) + \log \left(1 + \Theta \left(\frac{1}{n} \right) \right)
\]
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

A binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

so:

$$
\begin{align*}
\lg(n!) &= \lg(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)) \\
&= \lg \sqrt{2\pi} + \lg \sqrt{n} + \lg\left(\frac{n}{e}\right)^n + \lg(1 + \Theta\left(\frac{1}{n}\right)) \\
&= \Theta(\lg \sqrt{n} + n \lg\left(\frac{n}{e}\right)) + \lg(1 + \Theta\left(\frac{1}{n}\right)) \\
&= \Theta(n \lg n)
\end{align*}
$$
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting \(n \) items? A binary tree with \(n! \) leaves has height at least \(\lg(n!) \).

Stirling: \(n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta\left(\frac{1}{n}\right)) \)

so:

\[
\begin{align*}
\lg(n!) &= \lg(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta\left(\frac{1}{n}\right))) \\
&= \lg \sqrt{2\pi} + \lg \sqrt{n} + \lg \left(\frac{n}{e}\right)^n + \lg(1 + \Theta\left(\frac{1}{n}\right)) \\
&= \Theta(\lg \sqrt{n} + n \lg \left(\frac{n}{e}\right)) + \lg(1 + \Theta\left(\frac{1}{n}\right)) \\
&= \Theta(n \lg n)
\end{align*}
\]

so comparison-based sorting takes \(\Omega(n \lg n) \) time.
EOLQs

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!