CS 758/858: Algorithms

Ford-Fulkerson

Cuts and Flows

http://www.cs.unh.edu/~ruml/cs758

- The Problem
- The Idea
- The Algorithm
- Properties
- Augmentation
- Break

Cuts and Flows

Ford-Fulkerson

Wheeler Ruml (UNH)

Class 18, CS 758 – 2 / 16

Ford-Fulkerson
☐ The Problem
■ The Idea
The Algorithm
Properties
Augmentation
Break
Cuts and Flows

Given directed graph, source and sink, find flow of maximum value.

logistics network design tasking

flow constraints: edge capacity, conservation at vertices

$$0 \le f(u,v) \le c(u,v)$$

$$\forall v \in V - \{s, t\}, \sum_{u \in V} f(v, u) = \sum_{u \in V} f(u, v)$$

details: removing 'anti-parallel' edges, multiple sources or sinks

Class 18, CS 758 – 3 / 16

Wheeler Ruml (UNH)

The Idea

Ford-Fulkerson

■ The Problem

The Idea

- The Algorithm
- Properties
- Augmentation
- Break

Cuts and Flows

Iteratively augment flow until no augmenting path exists.

Find augmentation via 'residual network' G_f with costs

$$c_{f}(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if}(u,v) \in E\\ f(v,u) & \text{if}(v,u) \in E\\ 0 & otherwise \end{cases}$$

residual network has reverse flow edges: not a legal 'flow network'

to augment $(\boldsymbol{u},\boldsymbol{v})\text{, add }f(\boldsymbol{u},\boldsymbol{v})$ and subtract $f(\boldsymbol{v},\boldsymbol{u})$

The Algorithm

Ford-Fulkerson The Problem The Idea The Algorithm Properties Augmentation Break Cuts and Flows

1. for each edge, $(u, v).f \leftarrow 0$ 2. while there exists an $s \rightsquigarrow t$ path p in the residual network 3. $c_f(p) \leftarrow \text{min capacity of edges along } p$ 4. for each edge (u, v) in p5. if $(u, v) \in E$ 6. $(u, v).f \leftarrow (u, v).f + c_f(p)$ 7. else 8. $(v, u).f \leftarrow (v, u).f - c_f(p)$

■ The Problem

■ The Idea

■ The Algorithm

Properties

Augmentation

Break

Cuts and Flows

What is its running time?

Is resulting flow maximum? (ie, 'no augmenting path' suffices?)

Augmentation

Ford-Fulkerson

■ The Problem

- The Idea
- The Algorithm
- Properties
- Augmentation
- Break

Cuts and Flows

If capacities are integer, converges in at most $|f^*|$ iterations. Each iteration is O(V + E) = O(E). So $O(|f^*|E)$ overall. Is this polynomial time?

Augmentation

Ford-Fulkerson

The Problem

■ The Idea

The Algorithm

Properties

Augmentation

Break

Cuts and Flows

If capacities are integer, converges in at most $|f^*|$ iterations. Each iteration is O(V + E) = O(E). So $O(|f^*|E)$ overall. Is this polynomial time?

Edmonds-Karp: find augmenting path via breadth-first search. Book has proof that this is O(VE) iterations. Each iteration O(E) so $O(VE^2)$ overall. (Fancy alg in book is $O(V^3)$.)

(correctness of FF requires talking about cuts!)

Class 18, CS 758 - 7 / 16

- The Problem
- The Idea
- The Algorithm
- Properties
- Augmentation
- Break

Cuts and Flows

- asst 10
- asst 11
- wildcard topic brainstorm

Cuts and Flows

- Graph Cuts
- \blacksquare Cuts and Flow
- The Story So far
- Max-Flow Thm
- Max-Flow Proof
- Again
- EOLQs

Cuts and Flows

Cuts and Flows

Graph Cuts

 \blacksquare Cuts and Flow

■ The Story So far

■ Max-Flow Thm

■ Max-Flow Proof

Again

EOLQs

consider cuts that separate s and t

flow across cut
$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Theorem: for a given flow, flow across any cut f(S,T) = value of flow |f| (a constant!)

Proof (sketch): flow comes out of s, goes into t, and is conserved everywhere else. As we 'push out' equality from s towards cut, each vertex we cross conserves flow when we consider all its edges.

Cuts and Flow

Ford-Fulkerson

Cuts and Flows

■ Graph Cuts

Cuts and Flow

■ The Story So far

■ Max-Flow Thm

■ Max-Flow Proof

Again

EOLQs

Theorem: value of any flow $f \leq$ capacity of every cut Proof:

$$\begin{array}{lll} f| &=& f(S,T) \text{ by previous theorem} \\ &=& \displaystyle\sum_{u \in S} \displaystyle\sum_{v \in T} f(u,v) - \displaystyle\sum_{u \in S} \displaystyle\sum_{v \in T} f(v,u) \\ &\leq& \displaystyle\sum_{u \in S} \displaystyle\sum_{v \in T} f(u,v) \\ &\leq& \displaystyle\sum_{u \in S} \displaystyle\sum_{v \in T} c(u,v) \text{ by capacity constraint} \\ &\leq& c(S,T) \end{array}$$

Wheeler Ruml (UNH)

Class 18, CS 758 - 11 / 16

The Story So far

Ford-Fulkerson	Va
Cuts and Flows Graph Cuts Cuts and Flow The Story So far	ar
Max-Flow Thm Max-Flow Proof Again EOLQs	1
•	

alue of a flow = flow across any cut

```
ny flow value \leq capacity of cut
```

now...

The Story So far

Ford-Fulkerson	<u>۱</u>
Cuts and Flows	
Graph Cuts	-
Cuts and Flow	Ċ
The Story So far	
Max-Flow Thm	
Max-Flow Proof	
■ Again	
■ EOLQs	-

value of a flow = flow across any cut

```
any flow value \leq capacity of cut
```

.now...

Maximum flow value = minimum cut capacity

Cuts and Flows

- Graph Cuts
- Cuts and Flow
- \blacksquare The Story So far
- Max-Flow Thm
- Max-Flow Proof
- Again
- EOLQs

Theorem: these are all the same:

- 1. f is a maximum flow
- 2. the residual network G_f contains no augmenting paths
- 3. there exists a cut whose capacity is the value of f
- 1=2 would mean FF is correct.
- 1=3 would mean we can find minimum cuts in graphs using FF!

Ford-Ful	lkerson
i olu i u	Inci 3011

Cuts and Flows

Graph Cuts

■ Cuts and Flow

■ The Story So far

■ Max-Flow Thm

Max-Flow Proof

- Again
- EOLQs

Proof: $(1 \Rightarrow 2)$ if augmenting path exists, could increase value of flow.

 $(2 \Rightarrow 3)$ Define S to contain all vertices reachable from s in residual G_f , T = V - S. Consider vertices u, v where $u \in S, v \in T$. If edge $(u, v) \in E$, f(u, v) = c(u, v) (otherwise $v \in S$). If $(v, u) \in E$, f(v, u) = 0 (otherwise $v \in S$). If neither edge $\in E$, f(u, v) = 0. So

$$\begin{aligned} |f| &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) - \sum_{u \in S} \sum_{v \in T} 0 \\ &= c(S, T) \end{aligned}$$

 $(3 \Rightarrow 1) \forall c, |f| \leq c(S,T)$, so if |f| = c(S,T) then it's maximum.

Class 18, CS 758 - 14 / 16

Wheeler Ruml (UNH)

Said Another Way: Extracting the Cut

Ford-Fulkerson	all
Cuts and Flows	
Graph Cuts	
Cuts and Flow	ed
The Story So far	Cu
Max-Flow Thm	
Max-Flow Proof	no
Again	
■ EOLQs	

all nodes reachable from s in G_f are on one side

edges crossing cut are at capacity, by definition no flow back from T to S, also by definition

EOLQs

Ford-Fulkerson

- Cuts and Flows
- Graph Cuts
- Cuts and Flow
- The Story So far
- Max-Flow Thm
- Max-Flow Proof
- Again
- EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out. *Thanks!*