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Given directed graph, source and sink, find flow of maximum
value.

logistics
network design
tasking

flow constraints: edge capacity, conservation at vertices

0 ≤ f(u, v) ≤ c(u, v)

∀v ∈ V − {s, t},
∑

u∈V

f(v, u) =
∑

u∈V

f(u, v)

details: removing ‘anti-parallel’ edges, multiple sources or sinks
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Iteratively augment flow until no augmenting path exists.

Find augmentation via ‘residual network’ Gf with costs

cf (u, v) =







c(u, v)− f(u, v) if(u, v) ∈ E

f(v, u) if(v, u) ∈ E

0 otherwise

residual network has reverse flow edges: not a legal ‘flow
network’

to augment (u, v), add f(u, v) and subtract f(v, u)
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1. for each edge, (u, v).f ← 0
2. while there exists an s ❀ t path p in the residual network
3. cf (p)← min capacity of edges along p

4. for each edge (u, v) in p

5. if (u, v) ∈ E

6. (u, v).f ← (u, v).f + cf (p)
7. else
8. (v, u).f ← (v, u).f − cf (p)
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What is its running time?

Is resulting flow maximum? (ie, ‘no augmenting path’ suffices?)
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If capacities are integer, converges in at most |f∗| iterations.
Each iteration is O(V + E) = O(E). So O(|f∗|E) overall. Is
this polynomial time?
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If capacities are integer, converges in at most |f∗| iterations.
Each iteration is O(V + E) = O(E). So O(|f∗|E) overall. Is
this polynomial time?

Edmonds-Karp: find augmenting path via breadth-first search.
Book has proof that this is O(V E) iterations. Each iteration
O(E) so O(V E2) overall. (Fancy alg in book is O(V 3).)

(correctness of FF requires talking about cuts!)
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■ asst 10
■ asst 11
■ wildcard topic brainstorm
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consider cuts that separate s and t

flow across cut f(S, T ) =
∑

u∈S

∑

v∈T

f(u, v)−
∑

u∈S

∑

v∈T

f(v, u)

Theorem: for a given flow, flow across any cut f(S, T ) = value
of flow |f | (a constant!)

Proof (sketch): flow comes out of s, goes into t, and is
conserved everywhere else. As we ‘push out’ equality from s

towards cut, each vertex we cross conserves flow when we
consider all its edges.
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capacity of cut c(S, T ) =
∑

u∈S

∑

v∈T

c(u, v)

Theorem: value of any flow f ≤ capacity of every cut

Proof:

|f | = f(S, T ) by previous theorem

=
∑

u∈S

∑

v∈T

f(u, v)−
∑

u∈S

∑

v∈T

f(v, u)

≤
∑

u∈S

∑

v∈T

f(u, v)

≤
∑

u∈S

∑

v∈T

c(u, v) by capacity constraint

≤ c(S, T )
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value of a flow = flow across any cut

any flow value ≤ capacity of cut

..now...
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value of a flow = flow across any cut

any flow value ≤ capacity of cut

..now...

Maximum flow value = minimum cut capacity
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Theorem: these are all the same:

1. f is a maximum flow
2. the residual network Gf contains no augmenting paths
3. there exists a cut whose capacity is the value of f

1=2 would mean FF is correct.

1=3 would mean we can find minimum cuts in graphs using FF!
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Proof: (1⇒ 2) if augmenting path exists, could increase value of
flow.
(2⇒ 3) Define S to contain all vertices reachable from s in
residual Gf , T = V − S. Consider vertices u, v where
u ∈ S, v ∈ T . If edge (u, v) ∈ E, f(u, v) = c(u, v) (otherwise
v ∈ S). If (v, u) ∈ E, f(v, u) = 0 (otherwise v ∈ S). If neither
edge ∈ E, f(u, v) = 0. So

|f | =
∑

u∈S

∑

v∈T

f(u, v)−
∑

u∈S

∑

v∈T

f(v, u)

=
∑

u∈S

∑

v∈T

c(u, v)−
∑

u∈S

∑

v∈T

0

= c(S, T )

(3⇒ 1) ∀c, |f | ≤ c(S, T ), so if |f | = c(S, T ) then it’s maximum.
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all nodes reachable from s in Gf are on one side

edges crossing cut are at capacity, by definition

no flow back from T to S, also by definition
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For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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