http://www.cs.unh.edu/~ruml/cs758
Spanning Trees

- Problems
- Basic Approach

Kruskal's Algorithm

Prim's Algorithm
Problems

lightest total, lightest max, heaviest, ...

network connectivity
power, water distribution
wiring, VLSI

number of edges?
cycles?
Basic Approach

- Starting from \emptyset, grow spanning tree by adding edges

<table>
<thead>
<tr>
<th>Spanning Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems</td>
</tr>
<tr>
<td>Basic Approach</td>
</tr>
<tr>
<td>Kruskal's Algorithm</td>
</tr>
<tr>
<td>Prim's Algorithm</td>
</tr>
</tbody>
</table>
Basic Approach

starting from \emptyset, grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.
starting from \emptyset, grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.

Proof: if a MST T includes our edge, fine. Otherwise, consider an edge in T that crosses cut. Replace it with ours. Still a spanning tree. Cost can't go up, so still minimum.
Kruskal’s Algorithm
connect separate components until spanned
connect separate components until spanned

1. \(T \leftarrow \emptyset \)
2. for each vertex \(v \), \text{MAKE-SET}(v)
3. for each edge \((u, v)\) in nondecreasing order of weight
4. \text{if} \quad \text{FIND-SET}(u) \neq \text{FIND-SET}(v)
5. \quad \text{add edge to } T
6. \quad \text{UNION}(u, v)
7. return \(T \)

correctness?
running time?
asst 10
next week: lecture on Tues, no recitation
Prim’s Algorithm
grow tree until connected
grow tree until connected

1. for each vertex \(v \), \(v.c \leftarrow \infty \) and \(v.\pi \leftarrow \text{nil} \)
2. \(0.c \leftarrow 0 \)
3. \(Q \leftarrow \text{heap of all vertices} \)
4. while \(Q \) is not empty
5. \(u \leftarrow \text{remove vertex with minimum } c \)
6. for each neighbor \(v \) of \(u \)
7. if \(v \) is in \(Q \) and \(w(u, v) < v.c \)
8. \(v.c \leftarrow w(u, v) \)
9. \(v.\pi \leftarrow u \)
10. return \(\{(u, u.\pi) : v \in V - \{0\}\} \)

correctness? what is the invariant? running time?
For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!