http://www.cs.unh.edu/~ruml/cs758
Spanning Trees

- Problems
- Basic Approach
- Kruskal's Algorithm
- Prim's Algorithm

Spanning Trees
lightest total, lightest max, heaviest, \ldots

network connectivity
power, water distribution
wiring, VLSI

number of edges?
cycles?
Basic Approach

starting from ∅, grow spanning tree by adding edges
starting from \(\emptyset \), grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.
starting from \emptyset, grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.

Proof: if a MST T includes our edge, fine. Otherwise, consider an edge in T that crosses cut. Replace it with ours. Still a spanning tree. Cost can’t go up, so still minimum.
Kruskal’s Algorithm
connect separate components until spanned
connect separate components until spanned

1. $T \leftarrow \emptyset$
2. for each vertex v, MAKE-SET(v)
3. for each edge (u, v) in nondecreasing order of weight
4. if $\text{FIND-SET}(u) \neq \text{FIND-SET}(v)$
5. add edge to T
6. $\text{UNION}(u, v)$
7. return T

correctness?
running time?
asst 9
Prim's Algorithm
grow tree until connected
grow tree until connected

1. for each vertex v, $v.c \leftarrow \infty$ and $v.\pi \leftarrow \text{nil}$
2. $1.c \leftarrow 0$
3. $Q \leftarrow$ heap of all vertices
4. while Q is not empty
5. $u \leftarrow$ remove vertex with minimum c
6. for each neighbor v of u
7. if v is in Q and $w(u, v) < v.c$
8. $v.c \leftarrow w(u, v)$
9. $v.\pi \leftarrow u$
10. return $\{(u, u.\pi) : v \in V - \{1\}\}$

correctness? what is the invariant?
running time?
Let G be an undirected connected graph in which all edge weights are distinct. Which of these are true?

1. Every MST of G contains the edge of minimum weight.
2. If the edge of maximum weight is in a MST, then removing it would disconnect G.
3. No MST contains the edge of maximum weight.
4. G has a unique MST.
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!