Topological Sorting
Union-Find

http://www.cs.unh.edu/~ruml/cs758

1 handout: slides
Topological Sorting

The Problem

Break

Union-Find
Given a set of pairwise orderings $a \prec b$, find an ordering of all the elements that respects them or detect that no such ordering is possible.

How long does this take?
Union-Find
Problem: find components in an undirected graph and answer membership queries

Two cases: static vs dynamic

How can we identify components in the static case?
Union-Find ADT

Topological Sorting
- Components
- Algorithm
- Disjoint Sets
- Speed-Ups
- Pseudo-code
- More Pseudo-code
- EOLQs

Union-Find
- Make-Set \((x)\) makes new set containing \(x\)
- Union \((x, y)\) combine the set containing \(x\) with the set containing \(y\)
- Find-Set \((x)\) return a representative of the set containing \(x\)
find-components
1. foreach vertex \(v \)
2. \textit{Make-Set}(v)
3. for each edge \((u, v)\)
4. \textit{Union}(u,v)

\textit{in-same-component?}(u,v)
5. is \textit{Find-Set}(u) = \textit{Find-Set}(v)?
set is a tree rooted at representative

How to implement make, union, find?
union by rank track approximate height, put shorter under taller

path compression after `FIND-SET`, ensure touched nodes point directly to root
Pseudo-code

Make-Set(x)
1. x.p ← x
2. x.rank ← 0

3. Union(x, y)
4. x ← Find-Set(x)
5. y ← Find-Set(y)
6. if x.rank > y.rank
7. y.p ← x
8. else
9. x.p ← y
10. if x.rank = y.rank
11. increment y.rank
More Pseudo-code

Find-Set(x)
1. if x ≠ x.p
2. x.p ← Find-Set(x.p)
3. return x.p

For m operations on n sets, worst-case time is \(O(m\alpha(n))\).

\(\alpha(n)\) is inverse of Ackermann’s function. It is \(\leq 4\) if \(n \leq 2^{2048} = 16^{512}\).
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!