http://www.cs.unh.edu/~ruml/cs758
Graph Traversal
directed, arc/edge, weighted, labeled. drawings representation
relations → edges
cycle, DAG, tree, planar
traversal: graph → forest
The Algorithm

1. foreach vertex, label it undiscovered and $v.d \leftarrow \infty$
2. *start*'s label \leftarrow discovered, $d \leftarrow 0$, $\pi \leftarrow$ nil
3. $Q \leftarrow \{\text{start}\}$
4. while Q not empty
5. $u \leftarrow$ dequeue(Q)
6. foreach neighbor v of u
7. if v is undiscovered
8. label v discovered, $v.d \leftarrow u.d + 1$, $v.\pi \leftarrow u$
9. enqueue v in Q
10. label u finished

Which vertices does Q hold (at line 4)?
Do we really need all the labels?
What’s the time complexity?
Break

- asst 7
- asst 8
- midterm
- wildcard vote in one month
Factoids

1. Distances we assign always stay the same or go down.

2. $v.d \geq \delta(s, v)$
 Proof: Show $v.d \geq \delta(s, v) \forall v$ via induction over iterations:
 Holds at start.
 $v.d$ is updated to $u.d + 1 \geq \delta(s, u) + 1 \geq \delta(s, v)$.

3. d values in queue are nondecreasing and last in queue exceeds first by at most 1.
 Proof: By induction. True when queue is s.
 Preserved by dequeue.
 Enqueue: new.$d = \text{removed}.d + 1 \leq \text{first}.d + 1$ and
 last.$d \leq \text{removed}.d + 1 = \text{new}.d$.

4. At termination, $v.d = \delta(s, v) = \text{shortest path length}$
Proof

Claim: at termination, \(v.d = \delta(s, v) \) = shortest path length

Consider \(v \) with minimum incorrect distance, and \(u \) that is before it on a shortest path. \(v.d > \delta(u) + 1 = u.d + 1 \). When \(u \) is dequeued:

- if \(v \) is undiscovered, it would then be correct, contradiction.
- if \(v \) is already finished, then \(v.d \leq u.d \), contradiction.
- if \(v \) is discovered, let \(w \) be predecessor. \(v.d = w.d + 1 \) and \(w.d \leq u.d \) so \(v.d \leq u.d + 1 \), contradiction.
Depth-first Search

DFS
1. forall vertices, label ← undiscovered
2. DFS-visit(start)

DFS-visit(u)
3. label u discovered
4. foreach neighbor v of u
5. if v is undiscovered
6. \(v.\pi ← u \)
7. DFS-visit(v)
8. label u finished

What’s the time complexity?
Discovery and finish times are parenthesized
Vs breadth-first?
tree: in depth-first tree
back: connects to ancestor in tree
forward: non-tree edge connecting to descendant in tree
cross: others: non-ancestors/non-descendants or different DFS tree

when edge is explored, label of arc dest gives type
EOLQs

For example:
- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!