
CS 758/858: Algorithms

Greedy

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 1 / 22

http://www.cs.unh.edu/~ruml/cs758

Greedy Algorithms

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 2 / 22

Greedy

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 3 / 22

Make best local choice, then solve remaining subproblem.

Eg, optimal solution uses the greedy choice + optimal solution
to remaining subproblem.

Unlike DP, haven’t already solved subproblems, don’t need to
pick ‘best’ subsolution to use.

Activity Selection

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 4 / 22

Given n activities, {1, 2, ..., n}; the ith activity corresponding to
an interval starting at s(i) and finishing at f(i), find a
compatible set with maximum size.

Activity Selection

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 4 / 22

Given n activities, {1, 2, ..., n}; the ith activity corresponding to
an interval starting at s(i) and finishing at f(i), find a
compatible set with maximum size.

Make a choice: at each step, select the next activity to include in
the set.

Is there a rule?

“Rules” for Activity Selection

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 5 / 22

■ Earliest start time
■ Earliest finish time
■ Smallest interval
■ Least conflicts

Try to make a decision that is good locally,
before solving remaining subproblem.

Is best decision independent of remaining solution?

“Rules” for Activity Selection

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 5 / 22

■ Earliest start time
■ Earliest finish time
■ Smallest interval
■ Least conflicts

Try to make a decision that is good locally,
before solving remaining subproblem.

Is best decision independent of remaining solution?

The Algorithm

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 6 / 22

Make greedy choice, then solve remaining subproblem:

1. R← all activities
2. A← {}
3. while R 6= {}
4. let b = activity in R with earliest finish time
5. R← R \ {c : c conflicts with b}
6. A← A ∪ {b}
7. return A

Is this optimal?

Proving Greedy Optimal

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 7 / 22

Need to show:

1. greedy choice is optimal: there exists an optimal solution
that uses it

2. optimal substructure: the remaining subproblem can be
solved the same way

The Greedy Choice Property

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 8 / 22

Prove that first choice in optimal solution can be made greedily:

■ Let 〈a1, a2, ..., ai〉 be an optimal schedule.
■ If a1 is the activity with the earliest finish time then the

greedy choice is within some optimal solution.
■ If a1 is not the greedy choice (activity with the earliest finish

time) then there must exist an activity b with an earlier finish
time (f(b) < f(a1)).

■ b (the greedy choice) will be compatible with a2, so
〈b, a2, ..., ai〉 is also an optimal solution.

So making the greedy choice is always compatible with an
optimal solution.

Optimal Substructure

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 9 / 22

Prove that optimal solution contains optimal solution to
remaining subproblem after greedy choice:

■ Let 〈a1, a2, ..., ai〉 be an optimal schedule.
■ For the sake of contradiction, assume 〈ak, ..., ai〉 is a

suboptimal sub-schedule for the time after activity ak−1.
■ So, there exists a sequence 〈b1, ..., bj〉 that is a better

schedule for this time interval (after f(ak−1)).
■ ‘cut and paste’: replacing the suboptimal sub-schedule with

the better one yields a feasible schedule.
■ Since the new sub-schedule includes more activities,
〈a1, ..., ak−1,b1, ..., bj〉 must be a better schedule.

■ But this implies our optimal schedule was suboptimal:
contradiction!

■ So our assumption must not hold. Every sub-sechedule must
be optimal for its interval.

Summary of Greedy Algorithms

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 10 / 22

Make best local choice, then solve remaining subproblem.

Eg, optimal solution uses the greedy choice + optimal solution
to remaining subproblem.

1. prove greedy choice is safe (an optimal solution uses that
choice): subsitute greedy choice in optimal soluion

2. prove optimal substructure (optimal solution uses optimal
solutions of subproblems): assume suboptimal, then derive
contradiction

Break

Greedy

■ Greedy

■ Scheduling

■ Rules

■ Algorithm

■ Proof

■ Greedy Choice

■ Opt. Substructure

■ Summary

■ Break

Huffman Coding

Wheeler Ruml (UNH) Class 12, CS 758 – 11 / 22

■ asst7
■ midterm Thu Oct 17
■ midterm review Fri Oct 11

Huffman Coding

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 12 / 22

The Problem

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 13 / 22

Given a table of character frequencies, find a set of prefix-free
codewords that minimizes encoding length:

B(T) =
∑

c∈C

f(c) · dT (c)

c f(c) code

a 5 1
b 2 00
c 1 01

a a a b a b a c ⇒ 1 1 1 00 1 00 1 01

regular ASCII: 8 bytes = 64 bits ⇒ 11 bits (∼83% smaller)
fixed size: 8× 2 bits = 16 bits ⇒ 11 bits (∼31% smaller)

Code Structure

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 14 / 22

frequent characters will have shorter codes

every node in the optimal code tree has two children

The Algorithm

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 15 / 22

Distinguish elements by penalizing the two least frequent:

1. C ← characters c tagged by frequency f(c)
2. Q←Make-Min-Heap(C)
3. for i = 1 to |C| − 1 do
4. let z be a new tree node
5. z.left← Extract-Min(Q)
6. z.right← Extract-Min(Q)
7. f(z)← f(z.left) + f(z.right)
8. Heap-Insert(Q, z)
9. return Extract-Min(Q)

What’s the worst-case time complexity?

Proving that Greedy is Optimal

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 16 / 22

Show that

1. greedy choice is optimal (optimal solution can use greedy
choice)

2. the greedy choice plus an optimal solution to the remaining
subproblem is an optimal solution for the larger problem

The Greedy Choice is Optimal

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 17 / 22

Any code not worse (and maybe better) with greedy choice:

Let x and y be the least frequent and a and b be siblings at the
deepest depth in T . If they are not the same, we can improve
the code by swapping x and y for a and b.

Proof: Consider swapping x and a to get T ′.

B(T)−B(T ′) =
∑

c∈C

f(c) · dT (c)−
∑

c∈C

f(c) · dT ′(c)

= f(a) · dT (a) + f(x) · dT (x)

−f(a) · dT ′(a)− f(x) · dT ′(x)

= f(a) · dT (a) + f(x) · dT (x)

−f(a) · dT (x)− f(x) · dT (a)

= (f(a)− f(x))(dT (a)− dT (x))

≥ 0

Optimal Substructure

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 18 / 22

Show that the optimal solution to the subproblem remaining
after the greedy choice has been made can be extended by the
greedy choice into the optimal solution.

Combine least frequent characters x and y in C into z with
f(z) = f(x) + f(y). Let TR be the optimal code tree for this
reduced set CR. Now expand leaf for z in TR into branch for
leaves x and y. Prove this expanded tree T is optimal for C.

Optimal Substructure Proof, Part 1/2

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 19 / 22

Combine least frequent characters x and y in C into z with
f(z) = f(x) + f(y). Let TR be the optimal code tree for this
reduced set CR. Now expand leaf for z in TR into branch for
leaves x and y. Prove this expanded tree T is optimal for C.

First, compare encoding costs where T and TR differ:

f(x) · dT (x) + f(y) · dT (y) = (f(x) + f(y))(dTR
(z) + 1)

= f(z) · dTR
(z) + (f(x) + f(y))

Rest of the trees are the same, so:

B(T) = B(TR) + f(x) + f(y)

B(TR) = B(T)− f(x)− f(y)

Optimal Substructure Proof, Part 2/2

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 20 / 22

Combine least frequent characters x and y in C into z with
f(z) = f(x) + f(y). Let TR be the optimal code tree for this
reduced set CR. Now expand leaf for z in TR into branch for
leaves x and y. Prove this expanded tree T is optimal for C.

We just showed B(TR) = B(T)− f(x)− f(y).

Now, assume T non-optimal for C but tree O is. Note x and y

are siblings in O by greedy choice property. Form OR by
replacing them with z. Encoding cost:

B(OR) = B(O)− f(x)− f(y) by prev argument

< B(T)− f(x)− f(y) by assumption about O

< B(TR)

But TR was optimal for CR — contradiction!
Suboptimal T is impossible with optimal TR.

Summary of Greedy Algorithms

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 21 / 22

Make best local choice, then solve remaining subproblem.

Eg, optimal solution uses the greedy choice + optimal solution
to remaining subproblem.

1. prove greedy choice is safe (an optimal solution uses that
choice): subsitute greedy choice in optimal soluion

2. prove optimal substructure (optimal solution uses optimal
solutions of subproblems): assume suboptimal, then derive
contradiction

EOLQs

Greedy

Huffman Coding

■ The Problem

■ Code Structure

■ The Algorithm

■ Optimality

■ Greedy Choice

■ Substructure

■ Proof 1

■ Proof 2

■ Summary

■ EOLQs

Wheeler Ruml (UNH) Class 12, CS 758 – 22 / 22

For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!

	CS 758/858: Algorithms
	Greedy Algorithms
	Greedy
	Activity Selection
	``Rules'' for Activity Selection
	The Algorithm
	Proving Greedy Optimal
	The Greedy Choice Property
	Optimal Substructure
	Summary of Greedy Algorithms
	Break

	Huffman Coding
	The Problem
	Code Structure
	The Algorithm
	Proving that Greedy is Optimal
	The Greedy Choice is Optimal
	Optimal Substructure
	Optimal Substructure Proof, Part 1/2
	Optimal Substructure Proof, Part 2/2
	Summary of Greedy Algorithms
	EOLQs

