CS 758/858: Algorithms

DP	http://www.cs.unh.edu/~ruml/cs758	
More DP		

DP

■ Counting

■ 0-1 Knapsack

- Time Complexity
- Break

More DP

DP

Wheeler Ruml (UNH)

Counting

DP
Counting
■ 0-1 Knapsack
■ Time Complexity
Break
More DP

You are late for a meeting that is held on the floor above your current location. You can climb the staircase one step at a time, two steps at a time, or, with great effort, three steps at a time. As you are rushing upstairs, the increased bloodflow to your brain (combined with the adrenaline from being late) gives you a sudden flash of insight into how to count the number of ways of climbing a staircase of n steps. What is the algorithm?

0-1 Knapsack

DP
Counting
0-1 Knapsack
Time Complexity
Break
More DP

Given n objects with integer weights w_i and values v_i , what is the most valuable subset that weighs at most W?

0-1 Knapsack

DP
■ Counting
■ 0-1 Knapsack
■ Time Complexity
■ Break
More DP

Given n objects with integer weights w_i and values v_i , what is the most valuable subset that weighs at most W?

Give an algorithm that runs in O(nW) time.

0-1 Knapsack

DP
■ Counting
0-1 Knapsack
■ Time Complexity
Break
More DP

Given n objects with integer weights w_i and values v_i , what is the most valuable subset that weighs at most W?

Give an algorithm that runs in O(nW) time.

Will greedy work? What if items can be divided?

Time Complexity

DP
■ Counting
■ 0-1 Knapsack
■ Time Complexity
Break
More DP

what is the length of the input?

DP	
Counting	
■ 0-1 Knapsack	
■ Time Complexity	
Break	
More DP	

what is the length of the input?

pseudo-polynomial time: polynomial if the magnitude of the input numbers is polynomial in the input size.

DP	
Counting	
■ 0-1 Knapsack	
■ Time Complexity	
Break	
More DP	

what is the length of the input?

pseudo-polynomial time: polynomial if the magnitude of the input numbers is polynomial in the input size.

Does this apply to radix sort?

DP

More DP

- Increasing Subseq
- EOLQs

More DP

Wheeler Ruml (UNH)

DP
More DP
Increasing Subsection
■ EOLQs

Given a sequence of length n consisting of numbers, give an $O(n^2)$ algorithm that finds the longest (not necessarily contiguous) subsequence that consists of monotonically increasing values.

More DP
Increasing Subseq
EOLQs

Given a sequence of length n consisting of numbers, give an $O(n^2)$ algorithm that finds the longest (not necessarily contiguous) subsequence that consists of monotonically increasing values.

BTW, there is an $O(n \lg n)$ algorithm

DP

More DP
Increasing Subseq
EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out. *Thanks!*