Prof. Wheeler Ruml
TA Bence Cserna

http://www.cs.unh.edu/~ruml/cs758

6 handouts:
course info, schedule, programming tips, formulas, slides, asst 1
- web: search, caching, crypto
- networking: load balancing, synchronization, failover
- machine learning: data mining, recommendation
- bioinformatics: alignment, matching, clustering
- hardware: design, simulation, verification
- business: allocation, planning, scheduling
- AI: robotics, games
Algorithm

- precisely defined
- mechanical steps
- terminates
- input and related output

What might we want to know about it?
Why?

- Computer scientist ≠ programmer
 - understand program behavior
 - have confidence in results, performance
 - know when optimality is abandoned
 - solve ‘impossible’ problems
 - sets you apart (e.g., Amazon.com)

- CPUs aren’t getting faster
- Devices are getting smaller
- Software is the differentiator
- Everything is computation
780-850 AD
Born in Uzbekistan, worked in Baghdad.
Solution of linear and quadratic equations.
Founder of algebra.
Popularized arabic numerals, decimal positional numbers → algorism (manipulating digits) → algorithm.

The Compendious Book on Calculation by Completion and Balancing, 830.
invented algorithm analysis
The Art of Computer Programming, vol. 1, 1968

developed TeX,
literate programming

many famous students
published in MAD magazine
<table>
<thead>
<tr>
<th>Algorithms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This Class</td>
<td>■ Relations ■ Topics ■ Course Mechanics</td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
</tr>
</tbody>
</table>

This Class
requires 531/659 (formal thinking), 515 (data structures, C)
good mid-curriculum foundation for later advanced courses
UNH: one of 3 ‘theory’ courses (compilers, formal spec)
many schools: required
continuous improvement!
‘Greatest Hits’

1. data structures: trees, heaps, hashing
2. algorithms: dynamic programming, greedy, graphs
3. correctness: invariants
4. complexity: time and space
5. NP-completeness: reductions

Not including

1. (much) computability
2. (many) randomized algorithms
3. parallel algorithms
4. distributed algorithms
5. numerical algorithms, eg: crypto, linear programming
6. geometric algorithms
7. on-line or ‘run forever’ algorithms
8. fancy analysis
names → faces

sign up sheet

General information

- contact, books, C, due dates, collaboration, piazza.com

Schedule

- first week squeezed
- wildcard slot

Feedback is greatly needed and appreciated.

- eg, EOLQs. Try coming to my office hours!
Complexity

Algorithms

This Class

Complexity
- Sorting
- Counting Sort
- Correctness
- Counting Sort
- Complexity
- Counting Sort
- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs
How to sort one million records?
How to sort one million records?

How to sort one billion 16-bit integers?
How to sort one million records?

How to sort one billion 16-bit integers?

How to sort one trillion 4-bit integers?
Counting Sort

For \(n \) numbers in the range 0 to \(k \):

1. for \(x \) from 0 to \(k \)
2. \(\text{count}[x] \leftarrow 0 \)
3. for each input number \(x \)
4. increment \(\text{count}[x] \)
5. for \(x \) from 0 to \(k \)
6. do \(\text{count}[x] \) times
7. emit \(x \)
Counting Sort

For n numbers in the range 0 to k:

1. for x from 0 to k
2. count[x] ← 0
3. for each input number x
4. increment count[x]
5. for x from 0 to k
6. do count[x] times
7. emit x

Correctness?

Complexity?
Correctness

property 1: output is in sorted order
proof sketch: output loop increments \(x \), never decrements
Correctness

property 1: output is in sorted order
proof sketch: output loop increments x, never decrements

property 2: output contains same numbers as input
invariant:
Correctness

property 1: output is in sorted order
proof sketch: output loop increments x, never decrements

property 2: output contains same numbers as input
invariant: for each value,
\[
\text{remaining input} + \text{sum of counts} = \text{total}
\]
proof sketch:
Correctness

property 1: output is in sorted order
proof sketch: output loop increments x, never decrements

property 2: output contains same numbers as input
invariant: for each value,
$$\text{remaining input} + \text{sum of counts} = \text{total}$$
proof sketch:
initialized/established: before line 3
maintained: through lines 3–4
at termination: no remaining input
each number printed count times
therefore, output has same numbers as input
Counting Sort

For \(n \) numbers in the range 0 to \(k \):

1. for \(x \) from 0 to \(k \)
2. \(\text{count}[x] \leftarrow 0 \)
3. for each input number \(x \)
4. \(\text{increment count}[x] \)
5. for \(x \) from 0 to \(k \)
6. do count[\(x \)] times
7. emit \(x \)

Correctness? Yes.

Complexity?
RAM model
order of growth
worst-case

[try with previous slide]
Counting Sort

For \(n \) numbers in the range 0 to \(k \):

1. for \(x \) from 0 to \(k \) \hspace{1cm} O(k)
2. \(\text{count}[x] \leftarrow 0 \)
3. for each input number \(x \) \hspace{1cm} O(n)
4. increment \(\text{count}[x] \)
5. for \(x \) from 0 to \(k \) \hspace{1cm} O(k + n)
6. do \(\text{count}[x] \) times
7. emit \(x \)

\[
O(k + n + k + n) = O(2n + 2k) = O(n + k) \neq O(n \log n)
\]
Order Notation

ignore constant factors
ignore ‘start-up costs’
upper bound
Ignore constant factors, ignore 'start-up costs', upper bound

\[f(n) = O(g(n)) \]

e.g., running time is \(O(n \log n) \)
\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \],
\text{ such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \}\]

We can upper-bound (the tail of) \(f \) by scaling up \(g \).

Note non-transitive use of \(= \). Pronounced ‘is’.

Eg:

1. \(0.002x^2 - 35, 456x + 2^{80} \)
2. \(O(n^2) \text{ vs } O(n^3) \)
3. \(O(2^n) \text{ vs } O(3^n) \)
4. \(O(2^n) \text{ vs } O(2^{n+2}) \text{ vs } O(2^{2n}) \text{ vs } O(n^n) \)

“What is \(n \)?”
0.002x^2 - 35, 456x + 2^{80}
\(O(n^2)\) vs \(O(n^3)\)
And Friends

Upper bound (‘order of’):
\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \text{ such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Lower bound:
\[\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \text{ such that } cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \]

Tight bound:
\[\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, n_0 \text{ such that } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \} \]
Asymptotics

Upper bound ('dominated by '):
\[o(g(n)) = \{ f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \} \]

Lower bound ('dominates'):
\[\omega(g(n)) = \{ f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \} \]
- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!