Prof. Wheeler Ruml
TA Scott Kiesel

http://www.cs.unh.edu/~ruml/cs758

6 handouts:
course info, schedule, programming tips, formulas, slides, asst 1
Algorithms
- web: search, caching, crypto
- networking: load balancing, synchronization, failover
- machine learning: data mining, recommendation
- bioinformatics: alignment, matching, clustering
- hardware: design, simulation, verification
- business: allocation, planning, scheduling
- AI: robotics, games
Algorithm

- precisely defined
- mechanical steps
- terminates
- input and related output

What might we want to know about it?
Computer scientist ≠ programmer
- understand program behavior
- have confidence in results, performance
- know when optimality is abandoned
- solve ‘impossible’ problems
- sets you apart (eg, Amazon.com)

CPUs aren’t getting faster
- Devices are getting smaller
- Software is the differentiator
- Everything is computation
780-850 AD

Born in Uzbekistan, worked in Baghdad.

Solution of linear and quadratic equations.

Founder of algebra.

Popularized arabic numerals, decimal positional numbers → algorism (manipulating digits) → algorithm.

The Compendious Book on Calculation by Completion and Balancing, 830.
invented algorithm analysis
The Art of Computer Programming, vol. 1, 1968

developed \TeX, literate programming

many famous students
published in MAD magazine
This Class

This Class
- Relations
- Topics
- Course Mechanics
- requires 531/659 (formal thinking), 515 (data structures, C)
- good mid-curriculum foundation for later advanced courses
- UNH: one of 3 ‘theory’ courses (compilers, formal spec)
- many schools: required
- continuous improvement!
Topics

‘Greatest Hits’

1. data structures: trees, heaps, hashing
2. algorithms: dynamic programming, greedy, graphs
3. correctness: invariants
4. complexity: time and space
5. NP-completeness: reductions

Not including

1. (much) computability
2. (many) randomized algorithms
3. parallel algorithms
4. distributed algorithms
5. numerical algorithms, eg: crypto, linear programming
6. geometric algorithms
7. on-line or ‘run forever’ algorithms
8. fancy analysis
names → faces
sign up sheet
General information
 contact, books, C, due dates, collaboration, piazza.com
Schedule
 first week squeezed
 wildcard slot
Feedback is greatly needed and appreciated.
 eg, EOLQs. Try coming to my office hours!
Complexity
Sorting

This Class

Complexity

- Sorting
 - Counting Sort
 - Correctness
 - Counting Sort
 - Complexity
 - Counting Sort
 - Order Notation
 - \(\mathcal{O}() \)
 - And Friends
 - Asymptotics
 - EOLQs

Algorithms

- Bubble Sort
- Selection Sort
- Insertion Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort

How to sort one million records?
How to sort one million records?

How to sort one billion 16-bit integers?
Sorting

- Bubble Sort
- Selection Sort
- Insertion Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort

How to sort one million records?

How to sort one billion 16-bit integers?

How to sort one trillion 4-bit integers?
Counting Sort

For \(n \) numbers in the range 0 to \(k \):

1. for \(x \) from 0 to \(k \)
2. \(\text{count}[x] \leftarrow 0 \)
3. for each input number \(x \)
4. increment \(\text{count}[x] \)
5. for \(x \) from 0 to \(k \)
6. do \(\text{count}[x] \) times
7. emit \(x \)
Counting Sort

For \(n \) numbers in the range 0 to \(k \):

1. for \(x \) from 0 to \(k \)
2. \(\text{count}[x] \leftarrow 0 \)
3. for each input number \(x \)
4. increment \(\text{count}[x] \)
5. for \(x \) from 0 to \(k \)
6. do \(\text{count}[x] \) times
7. emit \(x \)

Correctness?

Complexity?
Correctness

property 1: output is in sorted order
proof sketch: output loop increments x, never decrements
Correctness

property 1: output is in sorted order
proof sketch: output loop increments x, never decrements

property 2: output contains same numbers as input
invariant:
Correctness

property 1: output is in sorted order
proof sketch: output loop increments x, never decrements

property 2: output contains same numbers as input
invariant: for each value,
 remaining input + sum of counts = total
proof sketch:
Correctness

property 1: output is in sorted order
proof sketch: output loop increments x, never decrements

property 2: output contains same numbers as input
invariant: for each value,

remaining input + sum of counts = total

proof sketch:
initialized/established: before line 3
maintained: through lines 3–4
at termination: no remaining input

each number printed count times
therefore, output has same numbers as input
Counting Sort

For n numbers in the range 0 to k:

1. for x from 0 to k
2. $\text{count}[x] \leftarrow 0$
3. for each input number x
4. increment $\text{count}[x]$
5. for x from 0 to k
6. do $\text{count}[x]$ times
7. emit x

Correctness? Yes.

Complexity?
RAM model
order of growth
worst-case

[try with previous slide]
For n numbers in the range 0 to k:

1. for x from 0 to k \hspace{2cm} O(k)
2. count[x] \leftarrow 0
3. for each input number x \hspace{2cm} O(n)
4. increment count[x]
5. for x from 0 to k \hspace{2cm} O($k + n$)
6. do count[x] times
7. emit x

$O(k + n + k + n) = O(2n + 2k) = O(n + k) \neq O(n \lg n)$
ignore constant factors
ignore ‘start-up costs’
upper bound
ignore constant factors
ignore ‘start-up costs’
upper bound

\[f(n) = O(g(n)) \]

c·g(n)

\[f(n) \]

\[n_0 \]

eg, running time is \(O(n \log n) \)
\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \text{ such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

We can upper-bound (the tail of) \(f \) by scaling up \(g \).

Note non-transitive use of \(= \). Pronounced ‘is’.

Eg:

1. \(0.002x^2 - 35, 456x + 2^{80} \)
2. \(O(n^2) \text{ vs } O(n^3) \)
3. \(O(2^n) \text{ vs } O(3^n) \)
4. \(O(2^n) \text{ vs } O(2^{n+2}) \text{ vs } O(2^{2n}) \text{ vs } O(n^n) \)

“What is \(n \)?”
Upper bound (‘order of’):
\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \]
\[\text{such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \}\]

Lower bound:
\[\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \]
\[\text{such that } cg(n) \leq f(n) \text{ for all } n \geq n_0 \}\]

Tight bound:
\[\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, n_0 \]
\[\text{such that } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \}\]
Asymptotics

Upper bound ('dominated by'):
\[o(g(n)) = \{ f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \} \]

Lower bound ('dominates'):
\[\omega(g(n)) = \{ f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \} \]
What’s still confusing?
What question didn’t you get to ask today?
What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!