EOLQs
Are We Done?
Beyond A\*
Suboptimal Search
Anytime Search
EOLQs

■ Are We Done?

Beyond A\*

Suboptimal Search

Anytime Search

Real-time Search

EOLQs

### Are We Done?



■ Are We Done?

#### Beyond A\* ■ GBFS

■ 8-puzzle

Evaluating Greedy

Beam Search

Suboptimal Search

Anytime Search

Real-time Search

EOLQs

# Beyond A\*

| ■ EOLQs<br>■ Are We Done?                                  | $Q \leftarrow$ an ordered list containing just the initial state.                  |
|------------------------------------------------------------|------------------------------------------------------------------------------------|
| Beyond A*                                                  | Loop                                                                               |
| GBFS                                                       | If $Q$ is empty,                                                                   |
| ■ 8-puzzle                                                 | then return failure.                                                               |
| <ul> <li>Evaluating Greedy</li> <li>Beam Search</li> </ul> | Node $\leftarrow \operatorname{Pop}(Q)$ .                                          |
| Suboptimal Search                                          | If Node is a goal                                                                  |
| Anytime Search                                             | then return Node (or noth to it)                                                   |
| Real-time Search                                           |                                                                                    |
| EOLQs                                                      |                                                                                    |
|                                                            | $Children \leftarrow Expand (Node).$                                               |
|                                                            | Merge <i>Children</i> into $Q$ , keeping <b>sorted by heuristic</b> . $\leftarrow$ |
|                                                            |                                                                                    |

## **GBFS** on the 8-puzzle

| ■ EOLQs<br>■ Are We Done?                                         | h(n) = num   | ber         | of ti       | les         | out of | place | e. (The  | bla         | nk is       | s not a     | a tile.) | )   |
|-------------------------------------------------------------------|--------------|-------------|-------------|-------------|--------|-------|----------|-------------|-------------|-------------|----------|-----|
| Beyond A*<br>GBFS<br>8-puzzle<br>Evaluating Greedy<br>Beam Search | Start state: | 2<br>1<br>7 | 8<br>6<br>⊔ | 3<br>4<br>5 |        | Goal  | state:   | 1<br>8<br>7 | 2<br>⊔<br>6 | 3<br>4<br>5 |          |     |
| Suboptimal Search<br>Anytime Search<br>Real-time Search<br>EOLQs  | Please draw  | the         | tree        | res         | ulting | from  | the firs | t tw        | o no        | ode ex      | pansio   | ons |

| FOI Qs |  |
|--------|--|
| LOLQS  |  |

■ Are We Done?

Beyond A\* ■ GBFS

■ 8-puzzle

Evaluating Greedy

Beam Search

Suboptimal Search

Anytime Search

Real-time Search

EOLQs

Assume branching factor b and solution at depth d.

Completeness: Time: Space: Admissibility:

### **Beam Search**

|   | EOI | _Qs |
|---|-----|-----|
| _ |     |     |

■ Are We Done?

Beyond A\* ■ GBFS

■ 8-puzzle

■ Evaluating Greedy

Beam Search

Suboptimal Search

Anytime Search

Real-time Search

EOLQs

Truncate queue to hold the most promising k nodes. k is the *beam width*. Works best with breadth-first search!

Wheeler Ruml (UNH)

■ Are We Done?

Beyond A\*

Suboptimal Search

Problem Settings

∎ wA\*

■ wA\* Behavior

■ Distance-to-go

 $\blacksquare \mathsf{RR-}d$ 

Anytime Search

Real-time Search

EOLQs

# **Suboptimal Search**

#### **Problem Settings**

| <ul> <li>EOLQs</li> <li>Are We Done?</li> <li>Beyond A*</li> </ul>     | <b>optimal:</b> minimize solution cost suffer all with $f(n) = g(n) + h(n) < f^*$           |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Suboptimal Search <ul> <li>Problem Settings</li> <li>wA*</li> </ul>    | greedy: minimize solving time                                                               |
| <ul> <li>wA* Behavior</li> <li>Distance-to-go</li> <li>RR-d</li> </ul> | <b>bounded suboptimal:</b> minimize time subject to relative cost bound (factor of optimal) |
| Anytime Search<br>Real-time Search<br>EOLQs                            | <b>bounded cost:</b> minimize time subject to absolute cost bound                           |
|                                                                        | <b>contract:</b> minimize cost subject to absolute time bound                               |
|                                                                        | anytime: iteratively converge to optimal                                                    |
|                                                                        | utility: maximize given function of cost and time                                           |



■ Are We Done?

Beyond A\*

Suboptimal Search

Problem Settings

∎ wA\*

■ wA\* Behavior

Distance-to-go

 $\blacksquare \mathsf{RR}\text{-}d$ 

```
Anytime Search
```

Real-time Search

EOLQs

$$f'(n) = g(n) + w \cdot h(n)$$

- nodes with high h(n) look even worse
- no infinite rabbit holes
- suboptimality bounded: within a factor of w of optimal!

#### wA\* Behavior





optimal: uniform-cost search

#### wA\* Behavior



Beyond A\*

Suboptimal Search

 $\blacksquare Problem Settings$ 

∎ wA\*

■ wA\* Behavior

■ Distance-to-go

 $\blacksquare \mathsf{RR-}d$ 

Anytime Search

Real-time Search

EOLQs



optimal: A\*

### wA\* Behavior



■ Are We Done?

Beyond A\*

Suboptimal Search

 $\blacksquare Problem Settings$ 

∎ wA\*

■ wA\* Behavior

■ Distance-to-go

 $\blacksquare \mathsf{RR-}d$ 

Anytime Search

Real-time Search

EOLQs



bounded suboptimal: Weighted A\*

EOLQsAre We Done?

Beyond A\*

Suboptimal Search

Problem Settings

■ wA\*

■ wA\* Behavior

■ Distance-to-go

 $\blacksquare$  RR-d

Anytime Search

Real-time Search

EOLQs

#### how to minimize solving time?

EOLQs

■ Are We Done?

Beyond A\*

Suboptimal Search

Problem Settings

■ wA\*

■ wA\* Behavior

■ Distance-to-go

 $\blacksquare$  RR-d

Anytime Search

Real-time Search

EOLQs

how to minimize solving time? how to minimize number of expansions?

| <br>  |  |
|-------|--|
|       |  |
| EULUS |  |

■ Are We Done?

Beyond A\*

Suboptimal Search

Problem Settings

■ wA\*

■ wA\* Behavior

■ Distance-to-go

 $\blacksquare \mathsf{RR-}d$ 

Anytime Search

Real-time Search

EOLQs

how to minimize solving time? how to minimize number of expansions? take the shortest path to a goal

■ EOLQs

Are We Done?

Beyond A\*

Suboptimal Search

Problem Settings

■ wA\*

■ wA\* Behavior

Distance-to-go

 $\blacksquare \mathsf{RR-}d$ 

Anytime Search

Real-time Search

EOLQs

how to minimize solving time? how to minimize number of expansions? take the shortest path to a goal for domains with costs, this is not h(n)

new information source: distance-to-go= d(n)



Wheeler Ruml (UNH)

■ EOLQs

Are We Done?

Beyond A\*

Suboptimal Search

Problem Settings

■ wA\*

■ wA\* Behavior

Distance-to-go

 $\blacksquare \mathsf{RR-}d$ 

Anytime Search

Real-time Search

EOLQs

how to minimize solving time? how to minimize number of expansions? take the shortest path to a goal for domains with costs, this is not h(n)

new information source: distance-to-go= d(n)



Speedy: best-first search on d

#### Round Robin d

■ EOLQs Are We Done? Beyond A\* Suboptimal Search ■ Problem Settings ■ wA\* ■ wA\* Behavior ■ Distance-to-go  $\square$  RR-dAnytime Search Real-time Search EOLQs

#### bounded-suboptimal using h, $\widehat{h}$ , d



optimal: uniform-cost

#### Round Robin d



■ Are We Done?

Beyond A\*

Suboptimal Search

Problem Settings

■ wA\*

■ wA\* Behavior

■ Distance-to-go

 $\square \mathsf{RR-}d$ 

Anytime Search

Real-time Search

EOLQs

#### bounded-suboptimal using h, $\widehat{h}$ , d



optimal: A\*

#### Round Robin $\boldsymbol{d}$



#### bounded-suboptimal using h, $\widehat{h}$ , d



bounded suboptimal: Weighted A\*

Wheeler Ruml (UNH)

#### Round Robin $\boldsymbol{d}$



### bounded-suboptimal using h, $\widehat{h}$ , d



bounded suboptimal: Optimistic Search (ICAPS, 2008)

#### Round Robin d



#### bounded-suboptimal using h, $\widehat{h}$ , d



bounded suboptimal: Explicit Estimation Search (IJCAI, 2011)

Wheeler Ruml (UNH)

■ Are We Done?

Beyond A\*

Suboptimal Search

Anytime Search

■ Anytime A\*

Break

Real-time Search

EOLQs

## **Anytime Search**

Wheeler Ruml (UNH)

### **Anytime A\***

EOLQs

Beyond A\*

Break

**EOLQs** 

■ Are We Done?

Suboptimal Search

Anytime Search
Anytime A\*

Real-time Search

- 1. run weighted A\*
- 2. keep going after finding a goal
- 3. keep best goal found (can test at generation)
- 4. prune anything with f(n) > incumbent

Anytime Restarting A\* (ARA\*): lower weight after finding each solution Anytime EES

#### Break

EOLQs

Are We Done?

Beyond A\*

Suboptimal Search

Anytime Search ■ Anytime A\*

Break

Real-time Search

EOLQs

asst2 (asst8), asst 3 scores and grades

■ Are We Done?

Beyond A\*

Suboptimal Search

Anytime Search

Real-time Search

■ RTA\*

- LSS-LRTA\*
- Search Algorithms

Other Algorithms

EOLQs

## **Real-time Search**

Wheeler Ruml (UNH)

### RTA\*

#### EOLQs

■ Are We Done?

Beyond A\*

Suboptimal Search

Anytime Search

Real-time Search

RTA\*

LSS-LRTA\*

Search AlgorithmsOther Algorithms

EOLQs

keep hash table of  $\boldsymbol{h}$  values for visited states

- 1. for each neighbor of current state  $\boldsymbol{s}$
- 2. either find h in table or do some lookahead
- 3. add edge cost to get f
- 4. update h(s) to second-best f value
- 5. move to best neighbor

## LSS-LRTA\*

#### EOLQs

- Are We Done?
- Beyond A\*
- Suboptimal Search

Anytime Search

Real-time Search

■ RTA\*

- LSS-LRTA\*
- Search Algorithms
- Other Algorithms

EOLQs

- 1. single A\* lookahead (LSS)
- 2. update all h values in LSS
- 3. move to frontier

#### **Search Algorithms**

| EOLQs             | Uninf  |
|-------------------|--------|
| Are We Done?      | Admi   |
| Beyond A*         | Limit  |
| Suboptimal Search | Satisf |
| Anytime Search    | Roun   |
| Real-time Search  | Doun   |
| ■ RTA*            | Real-1 |
| ■ LSS-LRTA*       |        |
| Search Algorithms |        |
| Other Algorithms  |        |
| EOLQs             |        |
|                   |        |
|                   |        |

Jninformed: DFS, UCS Admissible: A\* Limited memory: iterative deepening (IDDFS, IDA\*) Satisficing: GBFS, Speedy, Beam Bounded suboptimal: wA\*, RR-*d* Real-time: RTA\*, LSS-LRTA\*

#### **Other Shortest-path Algorithms**

EOLQs

- Are We Done?
- Beyond A\*
- Suboptimal Search
- Anytime Search
- Real-time Search
- RTA\*
- LSS-LRTA\*
- Search Algorithms
- Other Algorithms
- **EOLQs**

- SMA\*, IE
- **RBFS**
- Bugsy
- **Rectangle Search**
- any-angle pathfinding, Euclidean pathfinding
- multiobjective search
  - multi-level planning: TAMP, MAPF
- Course projects!

■ Are We Done?

Beyond A\*

Suboptimal Search

Anytime Search

Real-time Search

EOLQs

EOLQs

**EOLQ**s

Wheeler Ruml (UNH)

|--|

■ Are We Done?

Beyond A\*

Suboptimal Search

Anytime Search

Real-time Search

EOLQs

EOLQs

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out. *Thanks!*