

Lecture 27, CS 730 – 2 / 11

Monte Carlo Tree Search (MCTS)

UCT	
■ MCTS	
■ UCT	
■ Using UCT	
Break	
AlphaGo	

on-line action selection in MDPs

descent using current scores

roll-out Monte Carlo until termination

update scores in tree

growth add node to tree

easy to parallelize

Upper Confidence Bounds on Trees (UCT, ECML 2006)

UCT ■ MCTS

UCT

■ Using UCT

Break

AlphaGo

greedy is a poor strategy be humble — recognize your uncertainty! popular strategy: "optimism in the face of uncertainty"

> W(s, a) =total reward N(s, a) = number of times tried

$$Z(s,a) = \frac{W(s,a)}{N(s,a)} + C\sqrt{\frac{\log N(s)}{N(s,a)}}$$

Lecture 27, CS 730 – 4 / 11

Using UCT

UCT	
■ MCTS	
■ UCT	
■ Using UCT	
Break	
AlphaGo	

roll-out policy must be fast and good but not deterministic lots of extensions proposed in MoGo, C = 0 (although MC-RAVE provided pseudo-exploration)

Break

UCT
■ MCTS
■ UCT
■ Using UCT
Break
AlphaGo

- bring device with email/web access on Thursday for evaluations
- WI papers by Friday at 2pm

Go

UCT

AlphaGo

- Go
- AlphaGo
- APV-MCTS
- EOLQs

- branching factor: probabilistic beam
 search depth: UCT
 - static evaluation: deep neural net

AlphaGo

AlphaGo

- ∎ Go
- AlphaGo
- APV-MCTS

EOLQs

fast policy net $p_{\pi}(a|s)$ fast approximation for roll-outs 24% accurate, linear, $2\mu s$

SL policy net $p_{\sigma}(a|s)$ to reduce branching factor trained from 30M positions and expert moves 57% accuracy, 13 layers, 3ms

RL policy net $p_{\rho}(a|s)$ improves SL by self-play for 3 weeks beats SL 80%, beats Pachi 85%

value net $v_{\theta}(s)$ predicts RL outcome from state trained from 30M positions from separate games for week almost as good as rollouts with RL but 15,000 times faster

AlphaGo

∎ Go

■ AlphaGo

■ APV-MCTS

EOLQs

$$\operatorname*{argmax}_{a} Q(S,a) + c \cdot P(s,a) \frac{\sqrt{\sum_{b} N_r(s,b)}}{1 + N_r(s,a)}$$

P(s, a) given by SL policy net (not RL!) N_r = number of rollouts

at leaves:

$$v(s_L) = (1 - \lambda)v_\theta(s_L) + \lambda z_L$$

where z_L is a rollout using fast policy p_{π} in tree:

$$Q(s,a) = (1-\lambda)\frac{W_v(s,a)}{N_v(s,a)} + \lambda \frac{W_r(s,a)}{N_r(s,a)}$$

tree reused after move. search continues during opponent's move.

EOLQs

UCT AlphaGo

- Go
- AlphaGo
- APV-MCTS

EOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!