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Representation: variables, connectives
Inference: approximate, exact
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MDPs:
Naive Bayes:
k-Means:

Representation: variables, connectives
Inference: approximate, exact
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ultimate power: knowing the probability of every possible atomic
event (combination of values)
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ultimate power: knowing the probability of every possible atomic
event (combination of values)

simple inference via enumeration over the joint:
what is distribution of X given evidence e and unobserved Y

P (X|e) =
P (e|X)P (X)

P (e)
= αP (X, e) = α

∑

y

P (X, e, y)

Bayes Net = joint probability distribution
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In general:

P (x1, . . . , xn) = P (xn|xn−1, . . . , x1)P (xn−1, . . . , x1)
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In general:

P (x1, . . . , xn) = P (xn|xn−1, . . . , x1)P (xn−1, . . . , x1)

=
n∏

i=1

P (xi|xi−1, . . . , x1)
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In general:

P (x1, . . . , xn) = P (xn|xn−1, . . . , x1)P (xn−1, . . . , x1)

=
n∏

i=1

P (xi|xi−1, . . . , x1)

A Bayesian net specifies independence:

P (Xi|Xi−1, . . . , X1) = P (Xi|parents(Xi))
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In general:
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In general:

P (x1, . . . , xn) = P (xn|xn−1, . . . , x1)P (xn−1, . . . , x1)

=
n∏

i=1

P (xi|xi−1, . . . , x1)

A Bayesian net specifies independence:

P (Xi|Xi−1, . . . , X1) = P (Xi|parents(Xi))

So we get:

P (x1, . . . , xn) =
n∏

i=1

P (xi|parents(Xi))

For n b-ary variables with p parents, that’s nbp instead of bn!
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P (S = 1|W = 1) =
P (S = 1,W = 1)

P (W = 1)

=

∑
c,r P (C = c, S = 1, R = r,W = 1)

P (W = 1)

= 0.2781/0.6471 = 0.430

P (W = 1) =
∑

c,r,s

P (C = c, S = s,R = r,W = 1) = 0.6471

P (R = 1|W = 1) =
P (R = 1,W = 1)

P (W = 1)

=

∑
c,s P (C = c, S = s,R = 1,W = 1)

P (W = 1)

= 0.4581/0.6471 = 0.708
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■ exam 2
■ exam 3
■ projects: presentations, paper, paper drafts
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What is distribution of X given evidence e and unobserved Y ?

Draw worlds from the joint, rejecting those that do not match e.
Look at distribution of X.

each sample is linear time, but overall slow if e is unlikely
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What is distribution of X given evidence e and unobserved Y ?

ChooseSample (e)
w ← 1
for each variable Vi in topological order:

if (Vi = vi) ∈ e then
w ← w · P (vi|parents(vi))

else
vi ← sample from P (Vi|parents(Vi))

(afterwards, normalize samples so all w’s sum to 1)

uses all samples, but needs lots of samples if e are late in ordering
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■ What question didn’t you get to ask today?
■ What’s still confusing?
■ What would you like to hear more about?

Please write down your most pressing question about AI and put
it in the box on your way out.
Thanks!
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