handout: slides
Unsupervised Learning
modeling = predicting = understanding
clustering
finding ‘structure’ in data
Bottom-Up Unsupervised Learning

explain the data all-at-once vs piece-by-piece?

repeat

make a model to explain a minimal amount of data
check how much of the total data the model explains
repeat until model fits a decent amount of the data
when found, remove explained data from the set
until hard to find a decent model or not enough data left
given data, find a set of explanatory models:

repeat
 repeat many times
 randomly pick minimum data to fit model
 find inliers
 repeat until no change
 fit model to inliers
 find new inliers
 if best model has enough inliers
 record model
 remove inliers from data
 until best model not good enough or not enough data left
Break

- Wed May 8: 9-noon: project presentations
- Mon May 13 3pm: final paper
two hardcopies of paper, one hardcopy of source PDF and tarball via email
Naive Bayes model: choose class, generate attributes independently

mixture model: choose class, generate data

\[P(x|\theta) = \sum_k P(C = k|\theta_k)P(x|C = k, \theta_k) \]

eg, for mixture of Gaussians,

\[P(x|C = k, \mu_k, \sigma^2_k) = \frac{1}{\sqrt{2\pi\sigma^2_k}} \exp \left(-\frac{(x - \mu_k)^2}{2\sigma^2_k} \right) \]
Means represent the center of a cluster/class
Values for the means are the model
Model changes based on the classes assigned to the data

init the k means somehow
repeat until cluster assignments do not change:
 Assign each data point to the mean nearest to it
 Calculate new means for the data assigned to each cluster
Means represent the center of a cluster/class
Values for the means are the model
Model changes based on the classes assigned to the data

init the k means somehow
repeat until cluster assignments do not change:
 Assign each data point to the mean nearest to it
 Calculate new means for the data assigned to each cluster

Example
Means represent the center of a cluster/class
Values for the means are the model
Model changes based on the classes assigned to the data

init the \(k \) means somehow
repeat until cluster assignments do not change:
Assign each data point to the mean nearest to it
Calculate new means for the data assigned to each cluster

Example

Is the classification optimal?
What is it optimizing?
model parameters θ (eg, μ, σ^2, $P(C = k)$)

observed variables x_j

hidden variables C_j

init the θ_k somehow

repeat until done:

E: compute expected values of hidden vars: $P(C_j = k|x_j, \theta_k)$
 eg by $\alpha P(C = k)P(x_j|C = k, \theta_k)$

M: maximize data likelihood using current estimates:
 θ_k, with each x_j weighted by $P(C_j = k|x_j)$, eg by

$$\theta \leftarrow \arg\max_{\theta} \sum_z P(Z = z|x, \theta)P(x, Z = z|\theta)$$
model parameters θ (eg, $\mu, \sigma^2, P(C = k)$)
observed variables x_j
hidden variables C_j
init the θ_k somehow
repeat until done:
 E: compute expected values of hidden vars: $P(C_j = k | x_j, \theta_k)$
 eg by $\alpha P(C = k) P(x_j | C = k, \theta_k)$
 M: maximize data likelihood using current estimates:
 θ_k, with each x_j weighted by $P(C_j = k | x_j)$, eg by
 $$\theta \leftarrow \arg\max_{\theta} \sum_{Z} P(Z = z | x, \theta) P(x, Z = z | \theta)$$
greedy increase of data likelihood
Expectation-Maximization

Features

- Probabilistic clustering
- Explicit model
- Locally optimal

Issues

- Number of classes (means, Gaussians, etc.)
- Local maxima
Agglomerative Clustering

dendrogram
\(O(n^2)\) vs \(O(kn)\)
AutoClass
supervised learning: learning a function or a density
unsupervised learning: explaining data
reinforcement learning: learning how to act
EOLQs

- What question didn’t you get to ask today?
- What’s still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!