1 handout: slides
learning as function approximation

\textbf{\textit{k-NN:}} distance function (any attributes), any labels

\textbf{Neural network:} numeric attributes, numeric or binary labels

\textbf{Regression:} incremental training with LMS

\textbf{3-Layer ANN:} train with BackProp

what about discrete attributes and labels?
Decision Trees
Example: WillWait

Attributes

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>0–10</td>
</tr>
<tr>
<td>X_2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>30–60</td>
</tr>
<tr>
<td>X_3</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>X_4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Thai</td>
<td>10–30</td>
</tr>
<tr>
<td>X_5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>>60</td>
</tr>
<tr>
<td>X_6</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$</td>
<td>Yes</td>
<td>Yes</td>
<td>Italian</td>
<td>0–10</td>
</tr>
<tr>
<td>X_7</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>X_8</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$</td>
<td>Yes</td>
<td>Yes</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>X_9</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>>60</td>
</tr>
<tr>
<td>X_{10}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>Italian</td>
<td>10–30</td>
</tr>
<tr>
<td>X_{11}</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>X_{12}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>30–60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goal</th>
<th>WillWait</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 18.3 Examples for the restaurant domain.
Building a Decision Tree

- **Example**
- **Construction**
- **Break**

Naive Bayes

Boosting

DTLearn

```plaintext
DTLearn(examples, attributes, default)

if no examples, return default
if all same label, return it

m ← majority label
if no attributes, return m
else
    a ← choose attribute
    make node that branches on a
    remove a from attributes
    for each value v of a
        subtree ← DTLearn(examples with \( a = v \), attributes, m)
        add branch to subtree for \( v \) at node
    return node
```
want attribute that reduces uncertainty
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_i P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_{i} P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)

information gain of attribute \(A \):

\[H(X) - \sum_{a \in A} P(a) H(X_a) \]

where \(X_a \) contains only examples with \(A = a \)
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_i P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)

information gain of attribute \(A \):

\[H(X) - \sum_{a \in A} P(a)H(X_a) \]

where \(X_a \) contains only examples with \(A = a \)

stop when gain is small (\(\chi^2 \) test, see p.705) or cross-validate
asst 10

projects: four weeks from yesterday!
Naive Bayes
learning as function approximation

k-NN: distance function (any attributes), any labels

Neural network: numeric attributes, numeric or binary labels

Regression: incremental training with LMS

3-Layer ANN: train with BackProp

Decision Trees: easier with discrete attributes and labels

learning as density estimation
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

\[P(H) = 0.0001 \]
\[P(D|H) = 0.99 \]
\[P(D) = 0.01 \]

\[P(H|D) = \]
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

\begin{align*}
P(H) &= 0.0001 \\
P(D|H) &= 0.99 \\
P(D) &= 0.01 \\
P(H|D) &= \text{If you don’t have } P(D),
\end{align*}
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

\[
\begin{align*}
P(H) &= 0.0001 \\
P(D|H) &= 0.99 \\
P(D) &= 0.01
\end{align*}
\]

\[P(H|D) = \]

If you don’t have \(P(D) \), sometimes it helps to note that

\[P(D) = P(D|H)P(H) + P(D|\neg H)P(\neg H) \]
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]
Bayes’ Theorem:

\[
P(H|D) = \frac{P(H)P(D|H)}{P(D)}
\]

naive model:

\[
P(D|H) = P(x_i, \ldots, x_n|H) = \prod_{i} P(x_i|H)
\]
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

naive model:

\[P(D|H) = P(x_1, \ldots, x_n|H) = \prod_i P(x_i|H) \]

attributes independent, given class
Bayes’ Theorem:

\[
P(H|D) = \frac{P(H)P(D|H)}{P(D)}
\]

naive model:

\[
P(D|H) = P(x_1, \ldots, x_n|H) = \prod_i P(x_i|H)
\]

attributes independent, given class

\[
P(H|x_1, \ldots, x_n) = \alpha P(H) \prod_i P(x_i|H)
\]
$P(H | x_1, \ldots, x_n) = \alpha P(H) \prod_i P(x_i | H)$

attributes independent, given class

maximum \textit{a posteriori} = pick highest
maximum likelihood = ignore prior

watch for sparse data when learning!

learning as density estimation
Boosting
committees, ensembles
weak vs strong learners
reduce variance, expand hypothesis space (eg, half-spaces)
AdaBoost

N examples, T rounds, L a weak learner on weighted examples

$p \leftarrow $ uniform distribution over the N examples

for $t = 1$ to T do

$h_t \leftarrow $ call L with weights p

$\epsilon_t \leftarrow h_t$’s weighted misclassification probability

if $\epsilon_t = 0$, return h_t

$\alpha_t \leftarrow \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$

for each example i

if $h_t(i)$ is correct, $p_i \leftarrow p_i e^{-\alpha_t}$

else, $p_i \leftarrow p_i e^{\alpha_t}$

normalize p to sum to 1

return the h weighted by the α

to classify, choose label with highest sum of weighted votes
doesn’t overfit (maximizes margin even when no error)
outliers get high weight, can be inspected
problems:
- not enough data
- hypothesis class too small
- boosting: learner too weak, too strong
Supervised Learning: Summary

- **k-NN:** distance function (any attributes), any labels
- **Neural network:** numeric attributes, numeric or binary labels
 - **Regression:** incremental training with LMS
 - **3-Layer ANN:** BackProp learning

- **Decision Trees:** easier with discrete attributes and labels
- **Naive Bayes:** easier with discrete attributes and labels
- **Boosting:** general wrapper to improve performance

Didn’t cover: RBFs, FOIL, SVMs, deep learning
What question didn’t you get to ask today?
What’s still confusing?
What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!