learning as function approximation

\(k\text{-NN} \): distance function (any attributes), any labels

Neural network: numeric attributes, numeric or binary labels

Regression: incremental training with LMS

3-Layer ANN: train with BackProp

what about discrete attributes and labels?
Decision Trees

- Example
- Construction
- Break

Naive Bayes

Boosting
Example: WillWait

Decision Trees
- Example
- Construction
- Break

Naive Bayes

Boosting

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>30–60</td>
<td>No</td>
</tr>
<tr>
<td>X_3</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Thai</td>
<td>10–30</td>
<td>Yes</td>
</tr>
<tr>
<td>X_5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>>60</td>
<td>No</td>
</tr>
<tr>
<td>X_6</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Italian</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_7</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
<td>No</td>
</tr>
<tr>
<td>X_8</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Thai</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_9</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>>60</td>
<td>No</td>
</tr>
<tr>
<td>X_{10}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>Italian</td>
<td>10–30</td>
<td>No</td>
</tr>
<tr>
<td>X_{11}</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>0–10</td>
<td>No</td>
</tr>
<tr>
<td>X_{12}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>30–60</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 18.3 Examples for the restaurant domain.
Building a Decision Tree

- **Example**
- **Construction**
- **Break**

Naive Bayes

Boosting

DTLearn(examples, attributes, default)

if no examples, return default

if all same label, return it

\(m \leftarrow \text{majority label} \)

if no attributes, return \(m \)

else

\(a \leftarrow \text{choose attribute} \)

make node that branches on \(a \)

remove \(a \) from attributes

for each value \(v \) of \(a \)

\(\text{subtree} \leftarrow \text{DTLearn}(\text{examples with } a = v, \text{attributes}, m) \)

add branch to subtree for \(v \) at node

return node
want attribute that reduces uncertainty
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_i P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_{i} P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)

information gain of attribute \(A \):

\[H(X) - \sum_{a \in A} P(a)H(X_a) \]

where \(X_a \) contains only examples with \(A = a \)
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_i P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)

information gain of attribute \(A \):

\[H(X) - \sum_{a \in A} P(a) H(X_a) \]

where \(X_a \) contains only examples with \(A = a \)

prune branches when gain is small (\(\chi^2 \) test, see p.705) or cross-validate
Naive Bayes

Decision Trees

Naive Bayes
- So Far
- Bayes’ Theorem
- The NB Model
- The NB Classifier

Boosting
Supervised Learning: Summary So Far

learning as function approximation

\textbf{\textit{k-NN}:} distance function (any attributes), any labels

\textbf{Neural network:} numeric attributes, numeric or binary labels

\textbf{Regression:} incremental training with LMS

\textbf{3-Layer ANN:} train with BackProp

\textbf{Decision Trees:} easier with discrete attributes and labels

learning as density estimation
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]
Bayes’ Theorem

\[
P(H|D) = \frac{P(H)P(D|H)}{P(D)}
\]

\[
\begin{align*}
P(H) &= 0.0001 \\
P(D|H) &= 0.99 \\
P(D) &= 0.01 \\
P(H|D) &=
\end{align*}
\]
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

\[P(H) = 0.0001 \]
\[P(D|H) = 0.99 \]
\[P(D) = 0.01 \]

\[P(H|D) = \]

If you don’t have P(D),
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

\[
\begin{align*}
P(H) &= 0.0001 \\
P(D|H) &= 0.99 \\
P(D) &= 0.01
\end{align*}
\]

If you don’t have \(P(D) \), sometimes it helps to note that

\[P(D) = P(D|H)P(H) + P(D|\neg H)P(\neg H) \]
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

naive model:

\[P(D|H) = P(x_1, \ldots, x_n|H) = \prod_i P(x_i|H) \]
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

naive model:

\[P(D|H) = P(x_i, \ldots, x_n|H) = \prod_i P(x_i|H) \]

attributes independent, given class
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

naive model:

\[P(D|H) = P(x_1, \ldots, x_n|H) = \prod_i P(x_i|H) \]

attributes independent, given class

\[P(H|x_1, \ldots, x_n) = \alpha P(H) \prod_i P(x_i|H) \]
The ‘Naive Bayes’ Classifier

\[P(H | x_1, \ldots, x_n) = \alpha P(H) \prod_i P(x_i | H) \]

attributes independent, given class

maximum \textit{a posteriori} = pick highest
maximum likelihood = ignore prior

watch for sparse data when learning!

learning as density estimation
Boosting
committees, ensembles
weak vs strong learners
reduce variance, expand hypothesis space (eg, half-spaces)
AdaBoost

\(N \) examples, \(T \) rounds, \(L \) a weak learner on weighted examples

\[p \leftarrow \text{uniform distribution over the } N \text{ examples} \]

\[
\text{for } t = 1 \text{ to } T \text{ do} \\
\quad h_t \leftarrow \text{call } L \text{ with weights } p \\
\quad \epsilon_t \leftarrow h_t \text{'s weighted misclassification probability} \\
\quad \text{if } \epsilon_t = 0, \text{ return } h_t \\
\quad \alpha_t \leftarrow \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \\
\quad \text{for each example } i \\
\quad \quad \text{if } h_t(i) \text{ is correct, } p_i \leftarrow p_i e^{-\alpha_t} \\
\quad \quad \text{else, } p_i \leftarrow p_i e^{\alpha_t} \\
\quad \text{normalize } p \text{ to sum to } 1 \\
\text{return the } h \text{ weighted by the } \alpha \\
\]

to classify, choose label with highest sum of weighted votes
doesn’t overfit (maximizes margin even when no error)
outliers get high weight, can be inspected
problems:

- not enough data
- hypothesis class too small
- boosting: learner too weak, too strong
Supervised Learning: Summary

- **k-NN**: distance function (any attributes), any labels
- **Neural network**: numeric attributes, numeric or binary labels
 - **Regression**: incremental training with LMS
 - **3-Layer ANN**: BackProp learning
- **Decision Trees**: easier with discrete attributes and labels
- **Naive Bayes**: easier with discrete attributes and labels
- **Boosting**: general wrapper to improve performance

Didn’t cover: RBFs, FOIL, SVMs, deep learning
■ What question didn’t you get to ask today?
■ What’s still confusing?
■ What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!