1 handout: slides
Search
The ability to think is perhaps the most distinctive of human capacities. Typically, thinking involves mentally representing some aspects of the world (including aspects of ourselves) and manipulating these representations or beliefs so as to yield new beliefs, where the latter may aid in accomplishing a goal. —Edward E. Smith (Psychology, U Michigan)

The ability to solve problems is one of the most important manifestations of human thinking. ... We might therefore suspect that problem solving depends on general cognitive abilities that can potentially be applied to an essentially unlimited range of domains. —Keith Holyoak (Psychology, UCLA)
Representation

VW search space
VW state space
MC representation
Formalizing Problem Solving

State: hypothetical world state

Operators: actions that modify world

Goal: desired state or test

Basic Algorithms

Search

Basic Algorithms
- Alg 1
- Alg 2
- Uniform-cost
- Graphs
- Comparison
- Time vs space
- Both?
- Break

A Clever Algorithm

EOLQs

Basic Algorithms
\(Q \leftarrow \) an ordered list containing just the initial state.

Loop

- If \(Q \) is empty,
 - then return failure.

\textit{Node} \leftarrow \text{Pop}(Q).

- If \textit{Node} is a goal,
 - then return \textit{Node} (or path to it).

- else
 - \textit{Children} \leftarrow \textbf{Expand} (\textit{Node}).
 - Add \textit{Children} to front of \(Q \).
Assume branching factor b and solution at depth d.

Completeness:

Time:

Space:

Admissibility:
Let Q be an empty list.

Loop

If Q is empty,
 then return failure.

$Node \leftarrow \text{Pop}(Q)$.

If $Node$ is a goal,
 then return $Node$ (or path to it).
else
 $Children \leftarrow \text{Expand} (Node)$.
 Add $Children$ to end of Q.

 \leftarrow
Assume branching factor b and solution at depth d.

Completeness:

- **Time:**
- **Space:**

Admissibility:
Let Q be an empty list.

Loop

If Q is empty,
then return failure.

$Node \leftarrow \text{Pop}(Q)$.

If $Node$ is a goal,
then return $Node$ (or path to it).

else

$Children \leftarrow \text{Expand}(Node)$.

Merge $Children$ into Q, keeping sorted by path cost.
Dealing with Graphs

1. Check for cycles with ancestors
2. Maintain closed list (hash table) to detect duplicates
Comparison

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Space</th>
<th>Complete</th>
<th>Admissible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth-first</td>
<td>b^m</td>
<td>bm</td>
<td>If $m \geq d$</td>
<td>No</td>
</tr>
<tr>
<td>Breadth-first</td>
<td>b^d</td>
<td>b^d</td>
<td>Yes</td>
<td>If ops cost 1</td>
</tr>
<tr>
<td>Uniform-cost</td>
<td>b^d</td>
<td>b^d</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

branching factor b
maximum depth m
solution depth d
Assume $b = 10$, 1,000 nodes/sec, 100 bytes/node.

<table>
<thead>
<tr>
<th>Sol. depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>11 ms.</td>
<td>1.1 Kb</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>.1 sec</td>
<td>11 Kb</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 sec</td>
<td>1 Mb</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>18 min</td>
<td>111 Mb</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
<td>11 Gb</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>128 days</td>
<td>1 Tb</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 yrs</td>
<td>111 Tb</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>3,500 yrs</td>
<td>11 Pb</td>
</tr>
</tbody>
</table>
Search Conundrum

Breadth-first uses b^d space

* but complete and admissible

Depth-first complete only if $\text{limit} > d$, not admissible

* but bd space

How can we get the best of both?
Break

DFS implementation
blog
piazza
asst1
recitation
A Clever Algorithm
Iterative Deepening Search

for $d = 1$ to ∞ do
 depth-first search to level d
 if it succeeds
 then return solution

Could this possibly be efficient?
Assume branching factor b and solution at depth d.

Completeness:

Time:

Space:

Admissibility:
Nodes Generated by IDS

$b = 2$

<table>
<thead>
<tr>
<th>d</th>
<th>at d</th>
<th>in prev.</th>
<th>total</th>
<th>IDS</th>
<th>% of opt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>133.3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>157.1</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>15</td>
<td>31</td>
<td>57</td>
<td>183.9</td>
</tr>
</tbody>
</table>

$b = 10$

<table>
<thead>
<tr>
<th>d</th>
<th>at d</th>
<th>in prev.</th>
<th>total</th>
<th>IDS</th>
<th>% of opt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>109.1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>11</td>
<td>111</td>
<td>123</td>
<td>110.8</td>
</tr>
<tr>
<td>4</td>
<td>10000</td>
<td>1111</td>
<td>11,111</td>
<td>12,345</td>
<td>111.1</td>
</tr>
</tbody>
</table>
$b^d + 2b^{d-1} + 3b^{d-2} + ... + (d - 1)b^2 + db$

$\approx b^d \left(\frac{b}{b - 1} \right)^2$
EOLQs
Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out.

Thanks!