Beyond STRIPS	
MDPs	
Solving MDPs	
	1 handout: slides

Beyond	S1	ΓRΙ	PS
			· ·

ComparisonExtensions

- Setting
- Class Outline

MDPs

Solving MDPs

Beyond STRIPS

Wheeler Ruml (UNH)

Lecture 16, CS 730 – 2 / 15

Comparison

Beyond	STRIPS

- Comparison
- Extensions
- Setting
- Class Outline

MDPs

Solving MDPs

Forward: state space

- +: expressivity
- —: irrelevant states

Backward: sets of states

- \blacksquare +: relevant states
- —: larger space, reachable states, expressivity

Partial-order: plan space

- +: small space
- \blacksquare +/-: least commitment
- -: poor heuristics

STRIPS Extensions

Beyond	STRIPS
Degona	0.1.1.0

- Comparison
- Extensions
- Setting
- Class Outline

MDPs

Solving MDPs

negated goals: no problem with CWA disjunctive precondition: for regression, just branch conditional effects: for regression, if we need the effect, plan for the condition

universal preconditions and effects: just ground goals and preconditions

Beyond STRIPS

- ComparisonExtensions
- Setting

Class Outline

MDPs

Solving MDPs

STRIPS assumes static, deterministic world, discrete time, single discrete actions.

- 1. time, resources
- 2. concurrent actions
- 3. abstraction: hierarchical planning
- 4. uncertainty: eg, disjunctive effects
- 5. execution monitoring, replanning
- 6. continuous state
- 7. multiple (self-interested) agents

Class Outline

Beyond STRIPS	
Comparison	

- Extensions
- Setting
- Class Outline

MDPs

- 1. search: heuristics, CSPs, games
- 2. knowledge representation: FOL, resolution
- 3. planning: STRIPS, MDPs
- 4. learning: RL, supervised, unsupervised
- 5. KR with uncertainty: HMMs, Bayes nets

Beyond S	STRIPS
----------	--------

MDPs

- Examples
- Probability
- Definition
- \blacksquare What to do?
- Break

Solving MDPs

Markov Decision Processes

Wheeler Ruml (UNH)

Lecture 16, CS 730 – 7 / 15

Examples

Beyond STRIPS

MDPs

- Examples
- ProbabilityDefinition
- What to do?
- Break

- 1. robot navigation
- 2. driving
- 3. business
- 4. war
- 5. diagnosis
- 6 life

Probability

Beyond STRIPS

MDPs

ExamplesProbability

Definition

■ What to do?

Break

Solving MDPs

propositional domain: discrete or continuous 0-1, sum to 1 distribution of continuous = density $E(X) = \int x P(X = x) dx$ $P(X = x_1)$ written as $P(x_1)$ or if X is true/false, P(x)conditional (=posterior): $P(x|y) = P(x \land y)/P(y)$

Markov Decision Process (MDP)

Bevond	STRIPS

MDPs

- Examples
- Probability
- Definition

■ What to do?

Break

Solving MDPs

initial state: s_0 transition model: T(s, a, s') = probability of going from s to s' after doing a. reward function: R(s) for landing in state s. terminal states: sinks = absorbing states (end the trial).

Da	ام مر م	ст	грі	DC	
Беу	/ond	51	RI	P3	

MDPs

- Examples
- Probability
- Definition

■ What to do?

Break

Solving MDPs

initial state: s_0 transition model: T(s, a, s') = probability of going from s to s' after doing a. reward function: R(s) for landing in state s. terminal states: sinks = absorbing states (end the trial).

objective:

total reward: reward over (finite) trajectory: $R(s_0) + R(s_1) + R(s_2)$ discounted reward: penalize future by γ : $R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) \dots$

Ray	and	ST	⁻ RIPS	ς
Dey	yonu	5	1/11 2	J

MDPs

- Examples
- Probability
- Definition

■ What to do?

```
Break
```

Solving MDPs

```
initial state: s_0
transition model: T(s, a, s') = probability of going from s to
s' after doing a.
reward function: R(s) for landing in state s.
terminal states: sinks = absorbing states (end the trial).
```

```
objective:
```

```
total reward: reward over (finite) trajectory:

R(s_0) + R(s_1) + R(s_2)

discounted reward: penalize future by \gamma:

R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) \dots
```

find:

```
policy: \pi(s) = a
optimal policy: \pi^*
proper policy: reaches terminal state
```

MDPs

- Examples
- Probability
- Definition
- What to do?
- Break

 $\pi^*(s) =$

MDPs

- Examples
- Probability
- Definition
- What to do?
- Break

Solving MDPs

$$\pi^*(s) = \operatorname*{argmax}_{a} \sum_{s'} T(s, a, s') U^{\pi^*}(s')$$

 $U^{\pi}(s) =$

MDPs

- Examples
- Probability
- Definition
- What to do?
- Break

$$\pi^*(s) = \operatorname*{argmax}_{a} \sum_{s'} T(s, a, s') U^{\pi^*}(s')$$

$$U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi, s_{0} = s]$$

MDPs

- Examples
- Probability
- Definition
- What to do?
- Break

Solving MDPs

$$\pi^*(s) = \operatorname*{argmax}_{a} \sum_{s'} T(s, a, s') U^{\pi^*}(s')$$

$$U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi, s_{0} = s]$$

The key:

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s')$$

(Richard Bellman, 1957)

Wheeler Ruml (UNH)

Break

Beyond STRIPS

MDPs

- Examples
- Probability
- $\blacksquare Definition$
- What to do?
- Break

Solving MDPs

asst 3

- textbook
- final project proposals due next Monday in class
 - project handout
 - convince me it's interesting and doable
- project presentations: Wed May 9, 9am-noon

MDPs

Solving MDPs

 $\blacksquare Value \ Iteration$

EOLQs

Solving MDPs

Wheeler Ruml (UNH)

Lecture 16, CS 730 – 13 / 15

MDPs

Solving MDPs

Value Iteration

EOLQs

Repeated Bellman updates:

Repeat until happy for each state s $U'(s) \leftarrow R(s) + \gamma \max_a \sum_s' T(s, a, s')U(s')$ $U \leftarrow U'$

MDPs

Solving MDPs

Value Iteration

EOLQs

Repeated Bellman updates:

Repeat until happy for each state s $U'(s) \leftarrow R(s) + \gamma \max_a \sum_s' T(s, a, s')U(s')$ $U \leftarrow U'$

For infinite updates, guaranteed to reach equilibrium. Equilibrium is unique solution to Bellman equations!

EOLQs

Beyond STRIPS

MDPs

Solving MDPs

■ Value Iteration

EOLQs

- What question didn't you get to ask today?
- What's still confusing?
 - What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!