“Spock had a big, big effect on me. I am so much more Spock-like today than when I first played the part in 1965 that you wouldn’t recognize me. I’m not talking about appearance, but thought processes. Doing that character, I learned so much about rational logical thought that it reshaped my life.”

— Leonard Nimoy (1931–2015)
First-Order Inference

- Clausal Form
- Example
- Break

Semantics

FOL Odds and Ends

First-Order Inference
1. Eliminate \rightarrow using \neg and \lor
2. Push \neg inward using de Morgan’s laws
3. Standardize variables apart
4. Eliminate \exists using Skolem functions
5. Move \forall to front
6. Move all \land outside any \lor (CNF)
7. Can finally remove \forall and \land
1. Anyone who can read is literate.
2. Dolphins are not literate.
3. Some dolphins are intelligent.

Skolem, standardizing apart
Break

- asst 6, 7
- preliminary proposals due at next Tuesday’s class
 now is the time to talk
 wait to start project until I comment on your proposal
Semantics
A possible world is:

Propositional: a truth assignment for symbols. Exponential number of worlds.

First-order: a set of objects and an interpretation for constants, functions, and predicates (fixing referent of every term). Unbounded number of worlds.

No unique names assumption: constants not distinct.
No closed world assumption: unknown facts not false.

\(\alpha \) valid iff true in every world
\(\alpha \models \beta \) iff \(\beta \) true in every model of \(\alpha \)
Formally,

Interpretation: maps constant symbols to objects in the world, each function symbol to a particular function on objects, and each predicate symbol to a particular relation.

Model of P: an interpretation in which P is true. Eg, $\text{Famous}(\text{Lady Gaga})$ is true under the intended interpretation but not when the symbol Lady Gaga maps to Joe Shmoe.

Satisfiable: \exists a model for P. Eg, $P \land \neg P$ is not satisfiable.

Entailment: if Q is true in every model of P, then $P \models Q$. Eg, $P \land Q \models P$.

Valid: true in any interpretation. Eg, $P \lor \neg P$.
Recall $\alpha \models \beta$ iff β true in every model of α.

1. Assume $\text{KB} \models \alpha$.
2. So if a model i satisfies KB, then i satisfies α.
3. If i satisfies α, then doesn’t satisfy $\neg \alpha$.
4. So no model satisfies KB and $\neg \alpha$.
5. So $\text{KB} \land \neg \alpha$ is unsatisfiable.

Another way:

1. Suppose no model that satisfies KB also satisfies $\neg \alpha$. In other words, $\text{KB} \land \neg \alpha$ is unsatisfiable (= inconsistent = contradictory).
2. In every model of KB, α must be true or false.
3. Since in any model of KB, $\neg \alpha$ is false, α must be true in all models of KB.

Resolution is not complete: cannot derive $P \land \neg P$
1. Anyone whom Mary loves is a football star.
2. Any student who does not pass does not play.
3. John is a student.
4. Any student who does not study does not pass.
5. Anyone who does not play is not a football star.
6. Prove: If John does not study, then Mary does not love John.
FOL Odds and Ends
Gödel’s Completeness Theorem (1930) says a complete set of inference rules exists for FOL.

Herbrand base: substitute all constants and combinations of constants and functions in place of variables. Potentially infinite!

Herbrand’s Theorem (1930): If a set of clauses is unsatisfiable, then there exists a finite subset of the Herbrand base that is also unsatisfiable.

Ground Resolution Theorem: If a set of ground clauses is unsatisfiable, then the resolution closure of those clauses contains \(\bot \).

Robinson’s Lifting Lemma (1965): If there is a proof on ground clauses, there is a corresponding proof in the original clauses.

FOL is semi-decidable: if entailed, will eventually know
Equality: $\forall xy \ (\text{Holding}(x) \land \neg(x = y) \rightarrow \neg\text{Holding}(y))$

Unique: $\exists! x P(x) \equiv \exists x \ (P(x) \land \forall y (\neg(x = y) \rightarrow \neg P(y)))$
Specific Answers

Use the “answer literal”:

1. FatherOf(Alice, Bob)
2. FatherOf(Caroline, Bob)
3. FatherOf(x, y) → ParentOf(x, y)

Query: Who is Caroline’s parent?
Resolution Strategies

- **Breadth-first:** all first-level resolvents, then second-level...
 - Complete, slow

- **Set of Support:** at least one parent comes from SoS
 - Complete if non-SoS are satisfiable, nice

- **Input Resolution:** at least one parent from the input set
 - Complete for Horn KBs

Simplifications: remove tautologies, subsumed clauses, and pure literals.
Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out.

Thanks!