Planning	
<u></u>	
Heuristics	
	1 handout: slides
	730W entries were due

Planning

 H_1

Heuristics

Planning ■ STRIPS ■ Groceny World	
 Progression 	
<u>H₁</u> Heuristics	

State-space Planning

Planning

■ STRIPS

Grocery World

Progression

 H_1

Heuristics

Operator schema:

Parameters: Move(block, src, dest)
Preconditions: On(block, src), Clear(block), Clear(dest)
Delete list: On(block, src) Clear(dest)
Add list: On(block, dest) Clear(src)

Assume everything else is static. Closed world assumption. Invented for Shakey (SRI).

2	а	n	n	н	n	g	
				-		0	

```
■ STRIPS
```

Grocery World

```
Progression
```

 H_1

Heuristics

Initial: At(Home), Sells(HWS, Drill), Sells(SM, Milk), Sells(SM, Bananas)

Go (here,there)

```
Pre: At(here)
Post: At(there), ¬ At(here)
Buy(store,x)
Pre: At(store), Sells(store, x)
Post: Have(s)
```

Goal: At(Home), Have(Drill), Have(Milk), Have(Bananas)

Progression

Planning
■ STRIPS
Grocery World
Progression
H_1

Heuristics

Initial state: initial state Branch on all applicable actions Applicable: preconditions hold Effects: delete deletes, then add adds Goal reached when all goal atoms are true.

 H_1

Heuristics

H_1 : A Simple Heuristic for Planning

Lecture 13, CS 730 – 7 / 13

Planning

 H_1

Heuristics

- Simple Heuristics
- Break
- \blacksquare Computing H_1
- Cake World
- EOLQs

Heuristics

Simple Heuristics

Planning

 H_1

Heuristics

Simple Heuristics

Break

 \blacksquare Computing H_1

■ Cake World

EOLQs

h(n) = 0

number of unachieved goals ignore delete effects: H_1

asst 3

Planning

 H_1

- Heuristics
- Simple Heuristics
- Break
- $\blacksquare \text{ Computing } H_1$
- Cake World
- EOLQs

project proposals: talk with me before March 28

Computing H_1

Then \sum or max over goal.

Wheeler Ruml (UNH)

Cake World

Planning

Initial: Have(Cake)

```
H_1
```

Heuristics

```
■ Simple Heuristics
```

Break

```
Computing H_1
```

Cake World

EOLQs

```
Eat: Pre: Have(Cake)
    Post: Eaten(Cake), ¬ Have(Cake)
Bake: Pre: ¬Have(Cake)
    Post: Have(Cake)
```

Goal: Have(Cake), Eaten(Cake)

EOLQs

Planning

- H_1
- Heuristics
- Simple Heuristics
- Break
- $\blacksquare \text{ Computing } H_1$
- Cake WorldEOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!