Inference in FOL

Lirst_ord	or	
1 11 31-010		LUEIC
		<u> </u>

Logic

■ First-Order Logic

■ The Joy of Power

Inference in FOL

First-order Logic

Wheeler Ruml (UNH)

Lecture 12, CS 730 – 2 / 16

First-order Logic

Logic
First-Order Logic
The Joy of Power

Inference in FOL

A logic is a formal system:

- syntax: defines sentences
- semantics: relation to world
- inference rules: reaching new conclusions

three layers: proof, models, reality

flexible, general, and principled form of KR

First-order Logic
Logic
First-Order Logic
The low of Power

Inference in FOL

- 1. Things:
 - constants: *John*, *Chair23*
 - functions (thing \rightarrow thing): *MotherOf(John)*, *SumOf(1,2)*
- 2. Relations:
 - predicates (objects \rightarrow T/F): *IsWet(John)*, *IsSittingOn(MotherOf(John), Chair23)*
- 3. Complex sentences:
 - connectives: IsWet(John) \vee IsSittingOn(MotherOf(John),Chair23)
 - **quantifiers and variables**: $\forall person..., \exists person...$

■ Logic

First-Order Logic

The Joy of Power

Inference in FOL

 $\begin{array}{ll} \forall person \; \forall time & (ItIsRaining(time) \land \\ \neg \exists umbrella \; Holding(person, umbrella, time)) \rightarrow \\ & IsWet(person, time) \end{array}$

John loves Mary.

All crows are black.

Dolphin are mammals that live in the water.

Everyone loves someone.

Mary likes the color of one of John's ties.

I can't hold more than one thing at a time.

The Joy of Power

First-order Logic
Logic
■ First-Order Logic

The Joy of Power

Inference in FOL

- 1. Indirect knowledge: *Tall(MotherOf(John))*
- 2. Counterfactuals: $\neg Tall(John)$
- 3. Partial knowledge (disjunction):
 - $IsSisterOf(b, a) \lor IsSisterOf(c, a)$
- 4. Partial knowledge (indefiniteness): $\exists x IsSisterOf(x, a)$

Inference in FOL

- Example
- Clausal Form
- Break
- $\blacksquare Unification$
- Example
- Tricky Cases
- Refusition
- Completeness
- EOLQs

Reasoning in First-order Logic

Example

First-order Logic

Inference in FOL

- Example
- Clausal Form
- Break
- Unification
- Example
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

- 1. Cats like fish.
- 2. Cats eat everything they like.
- 3. Joe is a cat.

Prove: Joe eats fish.

Clausal Form

First-order Logic

- Inference in FOL
- Example
- Clausal Form
- Break
- Unification
- Example
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

- 1. Eliminate \rightarrow using \neg and \lor
- 2. Push \neg inward using de Morgan's laws
- 3. Standardize variables apart
- 4. Eliminate \exists using Skolem functions
- 5. Move \forall to front
- 6. Move all \land outside any \lor (CNF)
- 7. Can finally remove \forall and \land

Break

First-order Logic

- Inference in FOL
- Example
- Clausal Form
- Break
- Unification
- Example
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

asst 5

- asst 6, 7
- project idea sharing next Thursday
 - preliminary project proposals due Tue Mar 11 in class
 - final project proposals due Tue Apr 1 in class

Unifying Two Terms

First-order Logic

- Inference in FOL
- Example
- Clausal Form
- Break
- UnificationExample
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

- 1. if one is a constant and the other is
- 2. a constant: if the same, done; else, fail
- 3. a function: fail
- 4. a variable: **substitute** *constant* for *var*
- 5. if one is a function and the other is
- 6. a different function: fail
- 7. the same function: unify the two arguments lists
- 8. a variable: if *var* occurs in *function*, fail
- 9. otherwise, **substitute** *function* for *var*
- 10. otherwise, **substitute** one variable for the other

Carry out substitutions on all expressions you are unifying! Build up substitutions as you go, carrying them out before checking expressions? See handout on website.

Example

First-order Logic

- Inference in FOL
- Example
- Clausal Form
- Break
- Unification
- Example
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

- 1. Anyone who can read is literate.
- 2. Dolphins are not literate.
- 3. Some dolphins are intelligent.
- 4. Prove: someone intelligent cannot read.

Skolem, standardizing apart

Tricky Cases

First-order Logic

Inference in FOL

- Example
- Clausal Form
- Break
- Unification
- Example
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

```
don't unify x and f(x)!
as in P(x, x) meets \neg P(z, f(z))
```

```
note resolvent of P(f(x)) and \neg P(z) \lor P(f(z))
```

Semi-decidable: if yes, will terminate

Inference in FOL

- Example
- Clausal Form
- Break
- Unification
- Example
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

Recall KB $\models \alpha$ iff α true in every model of KB.

- 1. Assume KB $\models \alpha$.
- 2. So if a model *i* satisfies KB, then *i* satisfies α .
- 3. If *i* satisfies α , then doesn't satisfy $\neg \alpha$.
- 4. So no model satisfies KB and $\neg \alpha$.
- 5. So KB $\wedge \neg \alpha$ is unsatisfiable.
- The other way:
- 1. Suppose no model that satisfies KB also satisfies $\neg \alpha$. In other words, KB $\land \neg \alpha$ is unsatisfiable (= inconsistent = contradictory).
- 2. In every model of KB, α must be true or false.
- 3. Since in any model of KB, $\neg \alpha$ is false, α must be true in all models of KB.

Completeness

First-order Logic

Inference in FOL

Example

Clausal Form

Break

Unification

Example

■ Tricky Cases

Refuatation

Completeness

EOLQs

Gödel's Completeness Theorem (1930) says a complete set of inference rules exists for FOL.

Herbrand base: substitute all constants and combinations of constants and functions in place of variables. Potentially infinite!

Herbrand's Theorem (1930): If a set of clauses S is unsatisfiable, then there exists a finite subset of its Herbrand base that is also unsatisfiable.

Ground Resolution Thm: If a set of ground clauses is unsatisfiable, then the resolution closure of those clauses contains \perp .

Robinson (1965): If there is a proof on ground clauses, there is a corresponding proof in the original clauses.

FOL is semi-decidable: if entailed, will eventually know

EOLQs

First-order Logic

Inference in FOL

- Example
- Clausal Form
- Break
- Unification
- Example
- Tricky Cases
- Refuatation
- Completeness
- EOLQs

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out. *Thanks!*