asst 5 is posted
Introduction to Knowledge Representation and Reasoning
What is Knowledge Representation?

- Representing facts
- Reasoning with facts

Can computers be meaningful?
Philo of Megara (5C BC): truth tables
Aristotle (322BC): tautologies of proper arguments
Gottfried Leibniz (1646-1716): inference as math-like (bogus) logic
George Boole (1854): *The Laws of Thought* (almost propositional logic)
Gottlob Frege (1879): Conceptual Notation (propositional and first-order logic)
Dartmouth Conference (1956): ‘AI’ coined
Advice Taker (1959): manifesto for declarative knowledge
CYCorp (1984-, www.cyc.com): slightly more complicated than first-order logic
The Advice Taker (1959)

What is KR?
- History of Logic
- Advice Taker
- The PSSH

Prop. Logic
Reasoning

John McCarthy: “AI”, Lisp, time-sharing
Empirical Philosophy = Science

The Physical Symbol System Hypothesis: A physical symbol system has the necessary and sufficient means for general intelligent action. (Newell and Simon)

where a

Symbol is a designating pattern that can be combined with others to form another designating pattern

and

Designation means standing in for something in the world
Propositional Logic
Propositional Logic

What is KR?

Prop. Logic

- **Logic**
- **An Example**
- **Semantics**
- **Break**

Reasoning

An Example

Semantics

\[
\text{itisraining} \\
\text{iamwet} \\
\text{itisraining} \rightarrow \text{iamwet}
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(x \wedge y)</th>
<th></th>
<th>x \rightarrow y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c}
 x & x \rightarrow y \\
\hline
 T & \text{modus ponens} \\
 \hline
 F & \wedge, \lor, \neg, \rightarrow (\supset, \Rightarrow), \leftrightarrow
\end{array}
\]

Wheeler Ruml (UNH)
A logic is a formal system:

- **syntax**: defines sentences
- **semantics**: relation to world
- **inference rules**: reaching new conclusions

three layers: proof, models, reality

flexible, general, principled
If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.
Interpretation: possible world = state of affairs = truth value for each proposition
Meaning: values across all interpretations
Model of P: an interpretation in which P is true
Satisfiable: \exists a model
Entailment: if α is true in every model of KB, then $KB \models \alpha$
Valid: true in any interpretation

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$(x \land \neg y)$</th>
<th>z</th>
<th>$(x \land \neg y) \rightarrow z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
What is KR?

Prop. Logic
- Prop. Logic
- Logic
- An Example
- Semantics

Break

Reasoning

- asst 4
- asst 5
Entailment: if β is true in every model of α, then $\alpha \models \beta$

computing entailment
soundness, completeness

$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid

$\alpha \models \beta$ iff $\alpha \land \neg \beta$ is unsatisfiable

determining satisfiability is NP-complete
eg, easy to test proof of yes!
Given a formula of boolean logic, is there any assignment of T/F to its variables that makes the entire formula true?

\[(a \lor b \lor c) \land (\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor c) \land (\neg a \lor \neg b \lor \neg c)\]
The Davis-Logemann-Loveland Algorithm (1962)

\textbf{DLL}(\phi): \\
UnitPropagate(\phi) \\
[PureLiterals(\phi)] \\
if \phi \text{ is empty, return SAT}
if \phi \text{ contains empty clause, return UNSAT}
\begin{align*}
v & \leftarrow \text{choose a variable} \\
\text{if DLL(SetVariable}(\phi \text{ with } v = \text{true})) = \text{SAT, return SAT} \\
\text{else, return DLL(SetVariable}(\phi \text{ with } v = \text{false}))
\end{align*}

\textbf{UnitPropagate}(\phi):
\begin{align*}
\text{as long as there is a unit clause} \\
\text{SetVariable according to the literal}
\end{align*}

\textbf{SetVariable}(\phi \text{ with } v = \text{value}):
\begin{align*}
\text{remove clauses where } v \text{ appears as } \text{value} \\
\text{remove } v \text{ from clauses where it appears as } \neg\text{value}
\end{align*}
WalkSAT/SKC (1994)

for 1 to \(\text{maxTries} \)
 assign all variables randomly
 from 1 to \(\text{maxFlips} \)
 randomly choose an unsatisfied clause \(c \)
 if one or more of \(c \)'s variables can be flipped while
 breaking nothing,
 randomly choose among those
 else
 with probability \(p \)
 randomly choose one of \(c \)'s variables
 else
 randomly choose among those of \(c \)'s variables that
 minimize breaks
 flip the variable
 if formula satisfied, terminate

\[p \approx 0.5? \]
DPLL: 50 vars = 1.4 secs, 100 vars = 2.8 min, 140 vars = 4.7 hrs
Local Search for SAT

DPLL: 50 vars = 1.4 secs, 100 vars = 2.8 min, 140 vars = 4.7 hrs

GSAT: 100 vars = 6 secs, 140 vars = 14 secs, 500 vars = 1.6 hrs
Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out.

Thanks!