

Fiber Optic Core Image Detection:

Comparison of classifiers

Michael Leighton
112 Middle Street

Manchester, NH 03031
 Mikejleighton@gmail.com

Abstract
Visual inspection of fiber ends is often required during
installation or maintenance of fiber optic cabling.
Automated analysis first requires accurately determining the
location of the fiber core. In this paper, we compare the
accuracy and reliability of several different classifiers in
finding the fiber core. Classifiers such as naive bayes,
perception, and three layer feed forward neural networks
have proven to be a reliable way of recognizing items in
images. These three classifiers as well as a none learning
contrast-based algorithm are applied to the problem of
finding the fiber core and results are compared. Our results
show that using a three layer neural network is the most
accurate of the detection algorithms.

 Introduction
Fiber optic cores are extremely small in diameter; a typical
single mode fiber is about 65 microns. To put this into
proportion a human hair can range from 50 microns to 180
microns. Because of their small diameter fiber optic cores
can easily become dirty or damaged, hence visual analysis
of the core is required before maintenance or installation.
In many cases manual analysis can become tedious and
automated analysis is preferred. Automated analysis is not
possible until the location of the fiber core can be
accurately determined within a given image.
 Having an accurate and reliable way of determining the
location of the fiber core would be beneficial, and would
provide several useful applications. If analysis could be
done completely autonomously it would be possible to take
several images while in the field and batch them for latter
processing. It would also provide a convince for
technicians in the field, automatically detecting and
capturing images of the core could save time and money.
 Images of fiber optic end faces have several properties
that lead to the uses of general-purpose methods in
determining the location of the fiber optic core. First, the
core of a fiber optic cable is circular in nature. The
cladding, which is the area surrounding the core tends to be
much lighter then the core itself. Finally, the diameter of
the core is known under given magnifications.

 Given these properties and the nature of the problem
artificial intelligence techniques, specifically supervised
learning, can be used to determine the location of the fiber
optic core. In this paper, I will compare the accuracy of
several different classifiers in solving this problem. I will
also be comparing these classifiers to a contrast based
solution that does not require any form of supervised
learning.
 I propose that a three layer neural network trained with
the back propagation algorithm is the most reliable and
accurate method for finding the fiber core. The results
show that it detects the fiber core constantly with greater
precision then any of the other approaches.

Approaches
The following are four approaches that can be used in
determining the location of a fiber optic core in an image.
Three of these approaches require supervised learning and
a number of training examples. The fourth requires no
training examples; it works completely off of the contrast
of a given image.

Naive Bayes Classifier
The Naive Bayes Classifier is a purely probabilistic
classifier based on Bayes theorem. The classifier must first
be given a number of training examples and the class that
each training example belongs to. Probabilities are then
calculated and stored for use in classification. When
classification of an observed data set begins, the
probability that the given data set belongs to a class is
calculated. The class with the highest probability is then
chosen. The following equation describes the Naive Bayes
model.

Like the name suggests the model is naive in the fact that it
makes the assumption that each feature in the set is
independent of every other feature. Since Bayes theorem

∏=
i

ii
CPcPCP xxx)|()(),.......,|(

1
α

requires that futures be independent the true hypothesis can
never be achieved with this model, however in practice the
model is fairly accurate. The Naive Classifier scales well
and is fast to train. Another good quality of the classifier is
that it is not affected by noise.

Perceptron
A Perceptron is a single layer neural network trained with
linear regression. The number of neurons is equal to the
number of input features. The following equations describe
the output, and weight updates of the network.

Note alpha is equal to the learning rate. This needs to be
determined during construction of the network. A learning
rate of 0.001 was used during the training process for data
collected in the analysis portion of this paper.
 Single layer neural networks are good at the
classification of linear functions. However, they fail when
the function that is being represented is not linear. They are
also sensitive to noise data. Noisy training data can throw
off the weights of individual neurons in the network
causing errors during the classification process.

Three Layer Feed Forward Neural Network
The three layer neural network is the most powerful of the
approaches and, unfortunately, the hardest to train. It is
similar to the single layer network but because of its
hidden layer cannot be trained with linear regression. The
standard method of training the network is known as back
propagation. The following equation describes the back
propagation algorithm.

Like the name suggest the back propagation algorithm
propagates the error of the network backwards through all
of its neurons. To use back propagation an activation
function with a derivative is required. My implementation
of the back propagation algorithm uses the sigmoid
function and its derivative.

There are several design decisions that need to be made

while creating a three layer neural network. First, how
many neurons should be in the hidden layer of the
network? There are many rules of thumb on how to
determine this number. I settled on 110 neurons by using
trial and error. Next, what will the learning rate be? Similar
to the single layer network a learning rate must be
determined. I tried several rates starting at 0.001 but I
found that the network learned slowly. When I increased
this number to 0.05 learning was much faster and accuracy
remained the same or better.
 Finally, when to stop training of the network? The back
propagation algorithm requires a number of training
epochs. A training epoch is defined as one iteration
through all of the training examples. During an epoch,
error is tracked by summing the error for each individual
training example. It may be possible to max or average
over error for each example, however this approach was
not taken. When this number drops below a given
threshold training is complete. This is another number that
can be modified to change the performance and accuracy
of the network. The implementation analyzed here used a
threshold of 0.05.
 One important thing to note when designing a three
layer network is that all weights should not be set to the
same value initially. Error is propagated backwards based
on the current weight of a neuron and the derivative of the
activation function. If all weights are the same each neuron
in the network will always contain the same weight and
will never learn. This implementation uses a random
number generator with a known seed to initialize weights.

Contrast-Based Algorithm

Unlike the previous three approaches the contrast-based
algorithm requires no training data. The algorithm works
as follows. First, the mean brightness of the image is found
by summing the brightness of each pixel, then dividing by
the total number of pixels in the image. Next, pixels below
the mean are removed from the image. The remaining
pixels are then clustered together and analyzed. A center
point of each cluster is picked and distances from the outer
most pixels and the center pixel are compared. If the
cluster appears to be circular it is picked as the core. The
algorithm is fast but can be easily thrown off by noise. For
example if the image is dirty the fiber core may not be
detected.

Data Collection
Three of the four approaches required training the classifier
to recognize a fiber core. In order to train these classifiers
training data needed to be obtained. I wanted all of the
images to be of the same size and roughly the same
brightness. I used a video fiberscope to capture 270
individual fiber end face images. I then randomly selected

x
xxx

nnn

nn

yy

y

)(

,....,
2211

−−=

+++=
�

�

αθθ
θθθ

jkjkij

iijjj

ijijij

iii

WW

Wing

WW

ingErr

∆••+←

∆•=∆

∆••+←
•=∆

�
αα

αα

,,

,

,,

)('

)('

))(1()()('
1

1
)(

xgxgxg
e

xg x

−•=
+

= −

50 of those images for later testing. The remaining 230
images were used as training data.
 The next step was to manually select the location of the
fiber core in each of these images. I created a small
application that allowed me to draw a rectangle around the
fiber core, and then save that location to a file. I then did
this for all 270 images, both training and test.
 The last step in collecting data to train the classifiers was
to determine what the feature set should be. There needed
to be a feature for each pixel in the image of the fiber core.
Pixel brightness was used. An integer was generated for
each pixel (0 being the darkest and 10 being the brightest).
The final training file was then generated by scanning over
each of the 270 images with a rectangle that was the same
size as the fiber core. If the rectangle contained the core it
was labeled with a class of 1, if it did not contain the core
it was labeled with a class of zero.
 Initially full size images were used to generate the test
data and to classify the images. The initial image size was
720 by 576 and had a fiber core size of 125 by 125. The
feature count for these images was over 10,000. This made
training and classification very slow. The solution was to
shrink each image to 45 by 36 giving a fiber core rectangle
a size of 17 by 17 and a feature count of 287. It is
important to note that some data is lost by scaling the
images but training and classification becomes much
faster.

Classifying an Image
Searching for the fiber optic core with the contrast-based
algorithm was straightforward. The algorithm was given an
image to search and it returned the location of the fiber
core. The three classifiers however required a different
procedure.
 The classifiers were trained to give an output of one if
the observed data resemble a fiber optic core and zero if it
did not. Searching for the core required scanning over the
image with the classifier. The classifier ran at each pixel
location in the image, and the core was located by maxing
over the output of the classifier.

Analysis
The easiest way to test the accuracy of a classifier is to run
it on a set of data with known output and tabulate the
number of times it is incorrect. This form of testing did not
give me a good estimate of how well the classifier would
perform when searching an image; it also prevented me
from comparing the contrast-based algorithm with the
other classifiers.
 To solve this problem I manually selected the location of
each fiber optic core in all of the test images. I then
searched the test images using each of the classifiers and
the contrasted-based algorithm and calculated error by
using the Manhattan distance of the returned location and
the location that I manually selected.

 The contrasted-based algorithm does not learn but the 3
other classifiers have the ability to perform with better
accuracy given more training data. To analyze this I trained
each of the classifiers with a small amount of the training
data and calculated error by running the classifier over all
of the 50 images in the test set. Then incremented the
training counts and recalculated, and continued this until I
had used up all of the training data. The following graph
was generated. The y-axis represents the total number of
pixels away from the location that I manually selected over
all 50 images. The x-axis is the amount of training data that
was used to train the classifier. I also placed the contrasted-
based algorithm on the graph for comparison; however it is
important to note that it does not use training data and
therefore remains constant as training data increases.
 I was also curious to see if there was a pattern in the
kind of examples that each classifier got incorrect. To do
this I summed the error for each image and each classifier.
This allowed me to see which images each classifier did
the worst on. The results are displayed along with their
average error over all training counts.
 The final two comparisons are time based.
Benchmarking was done with a Centrino Duo machine
running at 2 GHZ with 2 GB of ram. The Classifiers were
constructed in a similar manner and share the same un-
optimized design. Time comparisons are meant to be
relative and not final times.

Training Count vs. Error (Pixels)

Naive Bayes Classifier

Average Error: 36 Pixels.

Average Error: 36 Pixels.

Perceptron

Average Error: 24 Pixels.

Average Error: 17 Pixels.

Three Layer Feed Forward Neural Network

Average Error: 3 Pixels.

Average Error: 3 Pixels.

Contrast-Based Algorithm

Average Error: 64 Pixels.

Average Error: 52 Pixels.

Training Count vs. Training Time (ms)

Time to classify image (ms) vs. Classifiers

Discussion

It is clear from the error graph that the three layer feed
forward neural network trained with back propagation
learns with fewer examples and is more accurate in
identifying the fiber optic core in an image than the other
three approaches. The three-layer network starts off at
about 41 pixels of error total over the 50 images. This
means that with 10 training examples it was able it pick a
location, on average, that was 1 pixel away from the
location that I had picked manually while creating the test
examples. It continued to perform well as training
examples were added, but there were some fluctuations. At
150 examples it jumped up to 67 pixels of error. It is not
clear why this happened, but one possible cause could be
that the additional training examples did not match the test
examples well. Since the number of hidden neurons was
picked by trial and error it is also possible that the network
was over fitting at different training sets. Over fitting is
when there are too many hidden nodes in the network to
match the true hypothesis well.
 The Naive Bayes classifier started off at about 400
pixels of error with 10 training examples and finished off
at 250 pixels of error with 230 examples. The classifier
was clearly learning, though error did occasionally go up
with more training examples.
 The single layer network did the most learning out of the
three classifiers. It started at about 600 pixels of error with
10 training examples and ended up with just fewer than
200 pixels of error with 230 training examples. Like the
other two classifiers error would occasionally go up with
training data but in general it would go down.
 The contrast-based algorithm had the least amount of
accuracy. It is however important to note that the
evaluation was not completely fair to this algorithm. When
I created the test data and selected the location of the fiber
optic core I gave it a slight boarder. Since the classifiers
were trained with this boarded they would pick a location
that also supplied this boarder. The contrasted-based
algorithm picked a location containing the fiber but did not
account for this boarder giving it a natural error of a couple
of pixels per image. This could very quickly add up over
50 images. If I had more time I would remove this boarder
from both the test and training data to get a more accurate
comparison.
 When comparing the images that each classifier did the
worst on, it’s easy to see that dirty fiber appears to be the
culprit. There is an exception; one of the fiber images that
the three layer network got wrong most frequently is a
clean fiber image. I went back to my test data and checked
the point on the image that I manually selected. It appears
that I picked the point without giving it any boarder. This
is most likely the reason why the classifier misclassified it
more then any other image.
 The training times graph clearly shows that the accuracy
of the 3 layer network comes at a cost. It is much slower to
train then the other three. It is also important to note that
there is a drop in training time. This could be caused by
variations in the training set. The contrast based algorithm

is placed on the graph as a reference but it will always be
zero since it does not train.
 The last comparison is running time (time to classify an
image). The 3 layer network is the slowest of the three.
Perception and naive bayes run at similar speeds, about
100ms faster then the 3 layer network. The contrast based
algorithm is the fastest. The graph is meant to be used as a
relative comparison. The classifiers have not been
optimized and have the potential to run faster. In general
however if the same optimizations were made to each
classifier relative speeds would remain the same.

Extensions
In the future I would like to run the same comparison but
with more test and training data. It is clear to see that both
the naive bayes classifier and the perceptron were learning
at a decent rate. I am curious if they would have matched
or exceeded the three layer networks accuracy given more
examples.
 Also there are several techniques that I would like to try
to speed up the classification process and increase the
accuracy of the classifiers. One of these techniques
involves training several classifiers on different size
images, starting from very small images and moving to the
full size image. The small classifiers would then be used to
find the general location of the fiber core. The larger
classifier would then use that location so it does not have
to scan the entire image. This could possibly speed up the
classification process.
 A genetic algorithm or simulated annealing could also
be used during training of the three layer network. As
mentioned earlier many decisions need to be made before
the network can be trained using back propagation.
Variables such as the number of nodes in the hidden layer,
the learning rate, and the termination error rate can all be
modified to affect the performance of the network. An
algorithm could determine combinations of these variables
that would lead to a more accurate classifier. Finding a true
optimal solution could be impossible since the number of
possible combinations is infinite. Using a local optimal
approach such as a genetic algorithm or simulated
annealing would likely lead to good results.
 It is also interesting to see that each classifier had it own
weakness. While most of the images that each classifier
had trouble with had dirt in them, they where still different
dirty images. This leads me to believe that a boosting
technique such as ADA boosting could help combine the
classifiers to make a very strong classifier that is more
accurate then any one of than alone.

Acknowledgments
I would like to thank Wheeler Ruml for several tips given
during the implementation process of the project. I would
also like to thank the engineering staff at Noyes Fiber for

lending me the equipment required to get training and test
images.

References
Russell, Stuart and Norvig, Petter 2003. Artificial
Intelligence, A Modern Approach 2nd edition. 20:716-738

Davies, E. R. 2005. Machine Vision : Theory, Algorithms,
Practicalities 24:691-700

P. Langley,W. Iba, and K. Thompson. An analysis of
Bayesian classifiers. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 399–406, San
Jose, CA, 1992.AAAI Press.

