
 
Fiber Optic Core Image Detection:  

Comparison of classifiers 

Michael Leighton 
112 Middle Street 

Manchester, NH 03031 
 Mikejleighton@gmail.com 

 
 
 
 

Abstract 
Visual inspection of fiber ends is often required during 
installation or maintenance of fiber optic cabling. 
Automated analysis first requires accurately determining the 
location of the fiber core. In this paper, we compare the 
accuracy and reliability of several different classifiers in 
finding the fiber core. Classifiers such as naive bayes, 
perception, and three layer feed forward neural networks 
have proven to be a reliable way of recognizing items in 
images. These three classifiers as well as a none learning 
contrast-based algorithm are applied to the problem of 
finding the fiber core and results are compared. Our results 
show that using a three layer neural network is the most 
accurate of the detection algorithms.  

 Introduction 
Fiber optic cores are extremely small in diameter; a typical 
single mode fiber is about 65 microns. To put this into 
proportion a human hair can range from 50 microns to 180 
microns. Because of their small diameter fiber optic cores 
can easily become dirty or damaged, hence visual analysis 
of the core is required before maintenance or installation. 
In many cases manual analysis can become tedious and 
automated analysis is preferred. Automated analysis is not 
possible until the location of the fiber core can be 
accurately determined within a given image.  
 Having an accurate and reliable way of determining the 
location of the fiber core would be beneficial, and would 
provide several useful applications. If analysis could be 
done completely autonomously it would be possible to take 
several images while in the field and batch them for latter 
processing. It would also provide a convince for 
technicians in the field, automatically detecting and 
capturing images of the core could save time and money. 
 Images of fiber optic end faces have several properties 
that lead to the uses of general-purpose methods in 
determining the location of the fiber optic core. First, the 
core of a fiber optic cable is circular in nature.  The 
cladding, which is the area surrounding the core tends to be 
much lighter then the core itself. Finally, the diameter of 
the core is known under given magnifications. 

 Given these properties and the nature of the problem 
artificial intelligence techniques, specifically supervised 
learning, can be used to determine the location of the fiber 
optic core.  In this paper, I will compare the accuracy of 
several different classifiers in solving this problem. I will 
also be comparing these classifiers to a contrast based 
solution that does not require any form of supervised 
learning.    
 I propose that a three layer neural network trained with 
the back propagation algorithm is the most reliable and 
accurate method for finding the fiber core. The results 
show that it detects the fiber core constantly with greater 
precision then any of the other approaches.  

Approaches 
The following are four approaches that can be used in 
determining the location of a fiber optic core in an image. 
Three of these approaches require supervised learning and 
a number of training examples. The fourth requires no 
training examples; it works completely off of the contrast 
of a given image.  

Naive Bayes Classifier 
The Naive Bayes Classifier is a purely probabilistic 
classifier based on Bayes theorem. The classifier must first 
be given a number of training examples and the class that 
each training example belongs to. Probabilities are then 
calculated and stored for use in classification. When 
classification of an observed data set begins, the 
probability that the given data set belongs to a class is 
calculated. The class with the highest probability is then 
chosen. The following equation describes the Naive Bayes 
model. 
 
 
  
 
Like the name suggests the model is naive in the fact that it 
makes the assumption that each feature in the set is 
independent of every other feature. Since Bayes theorem 
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requires that futures be independent the true hypothesis can 
never be achieved with this model, however in practice the 
model is fairly accurate. The Naive Classifier scales well 
and is fast to train. Another good quality of the classifier is 
that it is not affected by noise.  

Perceptron 
A Perceptron is a single layer neural network trained with 
linear regression. The number of neurons is equal to the 
number of input features. The following equations describe 
the output, and weight updates of the network. 
 
 
 
 
 
Note alpha is equal to the learning rate. This needs to be 
determined during construction of the network. A learning 
rate of 0.001 was used during the training process for data 
collected in the analysis portion of this paper.  
 Single layer neural networks are good at the 
classification of linear functions. However, they fail when 
the function that is being represented is not linear. They are 
also sensitive to noise data. Noisy training data can throw 
off the weights of individual neurons in the network 
causing errors during the classification process. 

Three Layer Feed Forward Neural Network 
The three layer neural network is the most powerful of the 
approaches and, unfortunately, the hardest to train. It is 
similar to the single layer network but because of its 
hidden layer cannot be trained with linear regression. The 
standard method of training the network is known as back 
propagation. The following equation describes the back 
propagation algorithm.  
 
 
 
 
 
 
 
 
 
 
Like the name suggest the back propagation algorithm 
propagates the error of the network backwards through all 
of its neurons. To use back propagation an activation 
function with a derivative is required. My implementation 
of the back propagation algorithm uses the sigmoid 
function and its derivative.   
 
 
 
 
  
There are several design decisions that need to be made  

while creating a three layer neural network. First, how 
many neurons should be in the hidden layer of the 
network? There are many rules of thumb on how to 
determine this number. I settled on 110 neurons by using 
trial and error. Next, what will the learning rate be? Similar 
to the single layer network a learning rate must be 
determined. I tried several rates starting at 0.001 but I 
found that the network learned slowly. When I increased 
this number to 0.05 learning was much faster and accuracy 
remained the same or better.  
 Finally, when to stop training of the network? The back 
propagation algorithm requires a number of training 
epochs. A training epoch is defined as one iteration 
through all of the training examples. During an epoch, 
error is tracked by summing the error for each individual 
training example. It may be possible to max or average 
over error for each example, however this approach was 
not taken. When this number drops below a given 
threshold training is complete. This is another number that 
can be modified to change the performance and accuracy 
of the network. The implementation analyzed here used a 
threshold of 0.05.  
 One important thing to note when designing a three 
layer network is that all weights should not be set to the 
same value initially. Error is propagated backwards based 
on the current weight of a neuron and the derivative of the 
activation function. If all weights are the same each neuron 
in the network will always contain the same weight and 
will never learn. This implementation uses a random 
number generator with a known seed to initialize weights.  

Contrast-Based Algorithm 

Unlike the previous three approaches the contrast-based 
algorithm requires no training data. The algorithm works 
as follows. First, the mean brightness of the image is found 
by summing the brightness of each pixel, then dividing by 
the total number of pixels in the image. Next, pixels below 
the mean are removed from the image. The remaining 
pixels are then clustered together and analyzed. A center 
point of each cluster is picked and distances from the outer 
most pixels and the center pixel are compared. If the 
cluster appears to be circular it is picked as the core. The 
algorithm is fast but can be easily thrown off by noise. For 
example if the image is dirty the fiber core may not be 
detected.  

Data Collection 
Three of the four approaches required training the classifier 
to recognize a fiber core. In order to train these classifiers 
training data needed to be obtained. I wanted all of the 
images to be of the same size and roughly the same 
brightness. I used a video fiberscope to capture 270 
individual fiber end face images. I then randomly selected 
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50 of those images for later testing. The remaining 230 
images were used as training data.  
 The next step was to manually select the location of the 
fiber core in each of these images. I created a small 
application that allowed me to draw a rectangle around the 
fiber core, and then save that location to a file. I then did 
this for all 270 images, both training and test.  
 The last step in collecting data to train the classifiers was 
to determine what the feature set should be. There needed 
to be a feature for each pixel in the image of the fiber core. 
Pixel brightness was used. An integer was generated for 
each pixel (0 being the darkest and 10 being the brightest). 
The final training file was then generated by scanning over 
each of the 270 images with a rectangle that was the same 
size as the fiber core. If the rectangle contained the core it 
was labeled with a class of 1, if it did not contain the core 
it was labeled with a class of zero.  
 Initially full size images were used to generate the test 
data and to classify the images. The initial image size was 
720 by 576 and had a fiber core size of 125 by 125. The 
feature count for these images was over 10,000. This made 
training and classification very slow. The solution was to 
shrink each image to 45 by 36 giving a fiber core rectangle 
a size of 17 by 17 and a feature count of 287. It is 
important to note that some data is lost by scaling the 
images but training and classification becomes much 
faster.  

Classifying an Image 
Searching for the fiber optic core with the contrast-based 
algorithm was straightforward. The algorithm was given an 
image to search and it returned the location of the fiber 
core. The three classifiers however required a different 
procedure.  
 The classifiers were trained to give an output of one if 
the observed data resemble a fiber optic core and zero if it 
did not. Searching for the core required scanning over the 
image with the classifier. The classifier ran at each pixel 
location in the image, and the core was located by maxing 
over the output of the classifier.  

Analysis 
The easiest way to test the accuracy of a classifier is to run 
it on a set of data with known output and tabulate the 
number of times it is incorrect. This form of testing did not 
give me a good estimate of how well the classifier would 
perform when searching an image; it also prevented me 
from comparing the contrast-based algorithm with the 
other classifiers.   
 To solve this problem I manually selected the location of 
each fiber optic core in all of the test images. I then 
searched the test images using each of the classifiers and 
the contrasted-based algorithm and calculated error by 
using the Manhattan distance of the returned location and 
the location that I manually selected.  

 The contrasted-based algorithm does not learn but the 3 
other classifiers have the ability to perform with better 
accuracy given more training data. To analyze this I trained 
each of the classifiers with a small amount of the training 
data and calculated error by running the classifier over all 
of the 50 images in the test set. Then incremented the 
training counts and recalculated, and continued this until I 
had used up all of the training data. The following graph 
was generated. The y-axis represents the total number of 
pixels away from the location that I manually selected over 
all 50 images. The x-axis is the amount of training data that 
was used to train the classifier. I also placed the contrasted-
based algorithm on the graph for comparison; however it is 
important to note that it does not use training data and 
therefore remains constant as training data increases.  
 I was also curious to see if there was a pattern in the 
kind of examples that each classifier got incorrect. To do 
this I summed the error for each image and each classifier. 
This allowed me to see which images each classifier did 
the worst on. The results are displayed along with their 
average error over all training counts.  
 The final two comparisons are time based. 
Benchmarking was done with a Centrino Duo machine 
running at 2 GHZ with 2 GB of ram. The Classifiers were 
constructed in a similar manner and share the same un-
optimized design. Time comparisons are meant to be 
relative and not final times.  

 
Training Count vs. Error (Pixels) 

 
Naive Bayes Classifier 
 
 
 
 



 
 
 
Average Error: 36 Pixels. 
 
 
 
 
 
 
 
 
 
 
 
Average Error: 36 Pixels. 
 
Perceptron 
 
 
 
 
 
 
 
 
 
 
 
Average Error: 24 Pixels. 
 
 
 
 
 
 
 
 
 

Average Error: 17 Pixels. 

Three Layer Feed Forward Neural Network 

 

 

 

Average Error: 3 Pixels. 

 

 

 

 

 

 

Average Error: 3 Pixels. 

 

Contrast-Based Algorithm 

 

 

 

Average Error: 64 Pixels. 

 

 

 

Average Error: 52 Pixels. 

 

 

 

 



 

 

 

 

 

 

 

 

 

Training Count vs. Training Time (ms) 

 

 

 

 

 

 

 

 

 

Time to classify image (ms) vs. Classifiers 

Discussion   

It is clear from the error graph that the three layer feed 
forward neural network trained with back propagation 
learns with fewer examples and is more accurate in 
identifying the fiber optic core in an image than the other 
three approaches. The three-layer network starts off at 
about 41 pixels of error total over the 50 images. This 
means that with 10 training examples it was able it pick a 
location, on average, that was 1 pixel away from the 
location that I had picked manually while creating the test 
examples.  It continued to perform well as training 
examples were added, but there were some fluctuations. At 
150 examples it jumped up to 67 pixels of error. It is not 
clear why this happened, but one possible cause could be 
that the additional training examples did not match the test 
examples well. Since the number of hidden neurons was 
picked by trial and error it is also possible that the network 
was over fitting at different training sets. Over fitting is 
when there are too many hidden nodes in the network to 
match the true hypothesis well.  
 The Naive Bayes classifier started off at about 400 
pixels of error with 10 training examples and finished off 
at 250 pixels of error with 230 examples. The classifier 
was clearly learning, though error did occasionally go up 
with more training examples.  
 The single layer network did the most learning out of the 
three classifiers. It started at about 600 pixels of error with 
10 training examples and ended up with just fewer than 
200 pixels of error with 230 training examples. Like the 
other two classifiers error would occasionally go up with 
training data but in general it would go down.  
 The contrast-based algorithm had the least amount of 
accuracy. It is however important to note that the 
evaluation was not completely fair to this algorithm. When 
I created the test data and selected the location of the fiber 
optic core I gave it a slight boarder. Since the classifiers 
were trained with this boarded they would pick a location 
that also supplied this boarder. The contrasted-based 
algorithm picked a location containing the fiber but did not 
account for this boarder giving it a natural error of a couple 
of pixels per image. This could very quickly add up over 
50 images. If I had more time I would remove this boarder 
from both the test and training data to get a more accurate 
comparison.  
 When comparing the images that each classifier did the 
worst on, it’s easy to see that dirty fiber appears to be the 
culprit. There is an exception; one of the fiber images that 
the three layer network got wrong most frequently is a 
clean fiber image. I went back to my test data and checked 
the point on the image that I manually selected. It appears 
that I picked the point without giving it any boarder. This 
is most likely the reason why the classifier misclassified it 
more then any other image.  
 The training times graph clearly shows that the accuracy 
of the 3 layer network comes at a cost. It is much slower to 
train then the other three. It is also important to note that 
there is a drop in training time. This could be caused by 
variations in the training set. The contrast based algorithm 



is placed on the graph as a reference but it will always be 
zero since it does not train.  
 The last comparison is running time (time to classify an 
image). The 3 layer network is the slowest of the three. 
Perception and naive bayes run at similar speeds, about 
100ms faster then the 3 layer network. The contrast based 
algorithm is the fastest. The graph is meant to be used as a 
relative comparison. The classifiers have not been 
optimized and have the potential to run faster. In general 
however if the same optimizations were made to each 
classifier relative speeds would remain the same.    

Extensions 
In the future I would like to run the same comparison but 
with more test and training data. It is clear to see that both 
the naive bayes classifier and the perceptron were learning 
at a decent rate. I am curious if they would have matched 
or exceeded the three layer networks accuracy given more 
examples.  
 Also there are several techniques that I would like to try 
to speed up the classification process and increase the 
accuracy of the classifiers. One of these techniques 
involves training several classifiers on different size 
images, starting from very small images and moving to the 
full size image. The small classifiers would then be used to 
find the general location of the fiber core. The larger 
classifier would then use that location so it does not have 
to scan the entire image. This could possibly speed up the 
classification process.  
 A genetic algorithm or simulated annealing could also 
be used during training of the three layer network.  As 
mentioned earlier many decisions need to be made before 
the network can be trained using back propagation. 
Variables such as the number of nodes in the hidden layer, 
the learning rate, and the termination error rate can all be 
modified to affect the performance of the network. An 
algorithm could determine combinations of these variables 
that would lead to a more accurate classifier. Finding a true 
optimal solution could be impossible since the number of 
possible combinations is infinite. Using a local optimal 
approach such as a genetic algorithm or simulated 
annealing would likely lead to good results.  
 It is also interesting to see that each classifier had it own 
weakness. While most of the images that each classifier 
had trouble with had dirt in them, they where still different 
dirty images. This leads me to believe that a boosting 
technique such as ADA boosting could help combine the 
classifiers to make a very strong classifier that is more 
accurate then any one of than alone.  
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