Assignment 10: Digit Recognizer
CS 730/830, Spring 2025
Due at 11pm on Mon Apr 14

Overview

You will write a trainable classifier for data with integer-valued attributes. Your program will be given
on standard input a sequence of labeled examples to use for training, followed by a sequence of unlabeled
examples for which it must provide a classification and a confidence.

Your program should accept a command line argument indicating the algorithm it should use: knn (k-
nearest neighbors with some preset k that you can choose) or linear (on-line linear regression using LMS).
Graduate students need to implement a third option, nb (naive Bayes).

Although your classifier should be reasonably general-purpose, we will mainly test it on the task of
classifying images of handwritten digits. An image will be presented as a vector of about 200 integer values
between 0 and 4 inclusive, representing pixel intensity values.

Input/Output

The input will consist of a short header giving the number of input attributes per example, the number
of values each attribute can take, and the number of classes. After a special indicator line, the training
instances will follow, one per line, with attributes separated by spaces and the class label at the start of the
line. The test instances will follow after a special indicator line:

4 attributes, 4 values, 10 classes
-- training --

00010

93322

10202

-— test —-

0110

3121

Your program must emit a class label and a confidence (between 0 and 1) for each of the test instances.
Each label-confidence pair should be on its own line and in the same order as the corresponding instances
appeared in the input. Eg:

0 0.8
9 0.56

You should emit your prediction for each test instance before moving on to read the next one. (Depending
on your I/O library, you might need to explicitly flush your output buffer!)

Supplied Utilities
We supply:

digits.data a file containing 60,000 randomly ordered training examples. This file is also provided in
“cs730/public/digits.data on agate.cs.unh.edu.

class-reference a sample solution.

class_tool a program to help you test your classifier. It reads digits data on standard input and uses this
data to train and test your classifier (your program’s name can be specified on the command-line, the
default is class). class_tool has two forms of output:

1. A confusion matrix is printed to standard output, along with the accuracy of the classifier. The
confusion matrix shows the percentage of times that an item of a given label (the row) is classified
as a certain label (the column) by the classifier.



2. A (optional) HTML output shows information about the most confident and least confident correct
matches along with the most confident false positives and false negatives for each digit. If used
on agate, the output will go to a website which you can browse to. The URL for this site is based
on your username on agate and it has the form:

http://cs.unh.edu/"cs730/asn5/<username>
class_tool takes the following arguments:

-agent Specific your binary.
-seed Specify the seed for the random number generator (the default is to use a seed value of 1).

-maxsize Specify the max size of training data for the trials. This option is useful for debugging when
you do not want to wait for all of the trials to complete.

-quiet Do not print output for each trial to standard output.
-html Output HTML.

-htmldir Specify the root directory for the HTML output. This option cannot be used with the
version in ¢s730/public on agate. The default is to output to the c¢s730 website on agate in a
directory with your username. If you use class_toolon your own machine, you should specify a
different ‘htmldir’.

To use class_tool on agate.cs.unh.edu, use the following command:
“cs730/public/class_tool [-<class_tool_arg> ...] [<agent_arg> ...] < "cs730/public/digits.data
ie.

~cs730/public/class_tool -seed ‘date +)M/S‘ -maxsize 500 \
-agent ./myagent nb < “cs730/public/digits.data

will run the program myagent with a seed based on the current minute and second for all trials with
less than or equal to 500 instances of training data using naive Bayes.

Write-up

Electronically submit your solution using the instructions on the course web page, including your source
code as well as a transcript of your program running with the tester and brief answers to the following
questions:

1. Describe any implementation choices you made that you felt were important. If you implement anything
beyond the assignment as written, please be sure to discuss it. Clearly explain any aspects of your
program that aren’t working. Mention anything else that we should know when evaluating your work.

2. What can you say about the the time and space complexity of your program?

3. For each algorithm you implemented, describe a learning problem that you think it will perform poorly
on and explain why.

4. What suggestions do you have for improving this assignment in the future?

Evaluation

We will look at your code mainly to try to give you partial credit.
k-NN: learns at all 1
k-NN: learns well 3

k-NN: not super-slow 1



linear: learns at all 1
linear: learns well 3
linear: not super-slow 1
NB: learns at all 1

NB: learns well 3

NB: not super-slow 1

Write-up 2

Design Suggestions

Python might not be the best choice for this assignment, as runtime efficiency is important. It might be
helpful to keep in mind that the number of instances is much larger than the number of attributes which is
larger than the number of classes.



