
Implementation and Evaluation of iSCSI over RDMA

Ethan Burns and Robert Russell

University of New Hampshire InterOperability Laboratory

121 Technology Drive, Suite 2

Durham, NH 03824-4716

{eaburns,rdr}@iol.unh.edu

Abstract

The Internet Small Computer Systems Interface (iSCSI)

is a storage network technology that allows block-level ac-

cess to storage devices, such as disks, over a computer net-

work. Because iSCSI runs over the ubiquitous TCP/IP pro-

tocol, it has many advantages over proprietary alternatives.

Due to the recent introduction of 10 gigabit Ethernet, stor-

age vendors are interested in the benefits this large increase

in network bandwidth could bring to iSCSI.

To make full use of the bandwidth provided by a 10 giga-

bit Ethernet link, specialized Remote Direct Memory Access

(RDMA) hardware is being developed to offload process-

ing and reduce the data-copy-overhead found in a standard

TCP/IP network stack. This paper focuses on the develop-

ment of an iSCSI software implementation capable of sup-

porting this new hardware, and a preliminary evaluation of

its performance.

We describe an approach used to implement iSCSI Ex-

tensions for Remote Direct Memory Access (iSER) with the

UNH iSCSI reference implementation. This involved a three

step process: moving UNH-iSCSI software from the Linux

kernel to user-space, adding support for the iSER exten-

sions to the user-space iSCSI, and finally moving everything

back into the Linux kernel. Results are given that show im-

proved performance of the completed iSER-assisted iSCSI

implementation on RDMA hardware.

1. Introduction

1.1. The iSCSI Protocol

The Internet Small Computer Systems Interface (iSCSI)

[11] protocol is a Storage Area Network (SAN) technology

that uses the Internet Protocol (IP, specifically TCP/IP) as

its underlying transport. Since iSCSI uses the TCP/IP pro-

tocol instead of a specialized network fabric, it has a lower

total cost of ownership than other SAN technologies [6]. In

addition to being less expensive than its competitors, iSCSI

also has the ability to provide networked storage over Local

Area Networks (LANs) or across the wide area Internet [15]

without requiring any specialized hardware.

1.2. Remote Direct Memory Access

The new 10 Gbit/s Ethernet (10GigE) standard allows

IP networks to reach competitive speeds, but without off-

loading onto specialized Network Interface Cards (NICs)

standard TCP/IP is not sufficient to make use of the entire

10GigE bandwidth. This is due to data copying, packet pro-

cessing and interrupt handling on the CPUs at each end of a

TCP/IP connection. In a traditional TCP/IP network stack,

an interrupt occurs for every packet received, data is copied

at least once in each host computer’s memory, and the CPU

is responsible for processing multiple nested packet headers

for all incoming and outgoing packets. To eliminate these

inefficiencies, specialized Remote Direct Memory Access

(RDMA) hardware can be used. One type of RDMA hard-

ware uses the Internet Wide Area Remote Protocol (iWARP)

protocol suite [3, 12, 10] to move data directly from the

memory of one computer to the memory of a remote com-

puter without extra copying or CPU intervention at either

end. The entire iWARP protocol suite is offloaded from the

CPU onto the RDMA Network Interface Card (RNIC). The

RNIC reduces the number of data copies that are required

by the TCP/IP network to one per host (between main mem-

ory and the Ethernet wire), and offloads the bulk of the net-

work processing from the CPU. This means applications

utilizing RNICs have lower CPU usage than those utiliz-

ing standard NICs, and can achieve throughput close to the

full capacity of 10GigE links.

1.3. iSCSI Extensions for RDMA

A difficulty with RDMA is that its usage differs from

traditional TCP/IP, and applications need some redesign-

ing to support it. For iSCSI, a new Internet Engineering

Task Force (IETF) standard has been created that defines

the iSCSI Extensions for RDMA (iSER) [7]. iSER describes

a set of operational primitives that must be provided by an

iSER implementation for use by an iSCSI implementation,

and a description of how a conforming iSER-assisted iSCSI

session must operate. A design goal of iSER was to re-

quire minimal changes to the SCSI architecture and min-

imal changes to the iSCSI infrastructure, while retaining

minimal state information [7]. With iSER, an iSCSI imple-

mentation can make use of RDMA hardware for very high

speed transfers.

2. Implementation

In order to compare iSER-assisted and traditional soft-

ware iSCSI implementations, we first needed to build a

working iSCSI-iSER-iWARP stack. Due to the complexity

of each layer in this stack, we chose to base our work on

preexisting implementations instead of creating our own,

whenever possible. This process involved selecting from

various software projects to use as a base, and then rework-

ing them to fit our needs.

2.1. Protocol Layers

The software layers developed for this project were

based on the following prior work:

• The University of New Hampshire iSCSI Reference

target and initiator (UNH-iSCSI) [8].

• The OpenFabrics Alliance (OFA) RDMA stack (for

communication with the RNIC hardware).

• An old iSER implementation from the OpenIB target

project [14].

In order to assist with development, debugging and test-

ing before RDMA hardware became available, we also

made use of a software-only implementation of the iWARP

protocol, developed at the Ohio Super-Computer Center

(OSC), which provides an OFA-compatible interface [5].

However, this software was not incorporated into our final

solution.

Figure 1 shows how the protocol layers fit together with

iSCSI and iSER. The shaded areas in this figure are im-

plemented in the hardware RNIC; the unshaded areas are

implemented in software. The following sections describe

the choices made for each of the three software layers, and

some of the problems encountered in fitting them together.

Additionally, a description of some required modifications

is given.

Figure 1. iSCSI-iSER-RDMA Stacks.

2.2. iSCSI

In order to create a working iSER solution, we first had

to choose an iSCSI implementation to which we would add

iSER support. There are a handful of freely available iSCSI

implementations for the Linux operating system. For a

number of reasons, we chose one created here at the Univer-

sity of New Hampshire InterOperability Lab (UNH-iSCSI)

[8]:

• The UNH-iSCSI implementation was created and is

maintained here at the InterOperability Lab (IOL) at

the University of New Hampshire, which makes it very

easy to get internal support. Most other choices would

require a lot of support from external organizations.

• UNH-iSCSI contains both an iSCSI initiator and tar-

get together in one project. Both are well tested and

supported by the IOL. Most other projects have built

either an iSCSI initiator or a target, not both, which

could lead to interoperability issues between separate

implementations.

• Previous work had already been done to add iSER sup-

port to UNH-iSCSI [9]. While other projects are de-

veloping, or are thinking about developing, iSER, the

UNH-iSCSI project already had some hooks for iSER

that were added during this previous, incomplete at-

tempt.

2.3. Three Steps

The UNH-iSCSI project was originally developed as a

Linux kernel module, which means the UNH-iSCSI code

runs in kernel-space, beneath the standard Linux SCSI layer

(which also runs in kernel-space). The OFA stack, how-

ever, provides both a kernel-space API and a user-space API

that could be used by iSER-assisted iSCSI. We therefore de-

cided to modify the existing UNH-iSCSI implementation so

that it could run in both kernel-space and user-space. This

would allow a direct comparison between the two modes

of operation. Furthermore, by moving the existing imple-

mentation into user-space and then using that to develop

the new iSER features, we expected to have a much eas-

ier time debugging the new code. This is because a mistake

made in kernel-space can often bring down an entire sys-

tem, whereas a mistake made in user-space will, at most,

abort the process that caused the error. In addition, user-

space code can be easily run in a debugger, which can pro-

vide line-by-line stepping and can give stack-traces when

errors are encountered.

Since the Open Fabrics Alliance RDMA stack, which we

chose to use for communicating with the RDMA hardware,

provides a user-space API in addition to a kernel-space API,

and since user-space programs are much easier to debug,

and therefore to develop, than kernel modules, we decided

to use three steps in our implementation.

1. Move UNH-iSCSI into user-space.

2. Add support for iSER-assisted iSCSI in user-space.

3. Move everything back into the Linux kernel.

2.4. Moving to User-Space

In order to properly mimic kernel-space libraries in user-

space, we attempted to use as much code directly from the

Linux kernel as possible. Specifically, we were able to di-

rectly use Linux kernel source code for doubly-linked lists

and the atomic t (a structure that defines a multiprocessor

atomic counter) data type. We also used Linux bit-wise op-

eration functions and some other utility routines. We were

not able to pull other higher level structures, such as threads

and semaphores, directly out of the kernel source code, so

we needed to use some user-space functionality. To handle

threads, for example, we used the POSIX threads library

to implemented functions that provide a behavior similar to

the Linux kernel threads API.

The UNH-iSCSI target was the first piece moved to user-

space. The kernel-space target is able to run in three dif-

ferent modes: DISKIO mode, FILEIO mode and MEMO-

RYIO mode. In DISKIO mode, SCSI commands are sent di-

rectly to a hardware disk driver via the standard Linux SCSI

mid-level software. In FILEIO mode, SCSI commands are

mapped into operations on a file stored within the local file

system – essentially the blocks of the file are used as if

they constituted a disk, but the FILEIO software uses file

system reads and writes rather than dealing directly with a

disk driver. In MEMORYIO mode, no permanent storage

medium is used – data is read into and written from a pri-

mary memory buffer, with no attempt made to retain the

data between operations. MEMORYIO mode is intended

solely to test the iSCSI subsystem, not to store data.

Of these three modes, only DISKIO mode is required to

be in kernel-space, because it causes the target to send SCSI

commands directly to the Linux SCSI mid-level, an opera-

tion that can only happen within the kernel. In the other two

modes (FILEIO and MEMORYIO) the target does not need

to be in kernel-space. This design allows the target code to

be moved to user-space without significant changes as long

as it is not compiled in DISKIO mode.

The UNH-iSCSI initiator required more work to get run-

ning in user-space. Since the kernel-space initiator receives

commands directly from the Linux SCSI mid-level1 it re-

quired some redesigning to move it out of the kernel. In

order for the initiator to act like a real SCSI initiator de-

vice, we needed to devise a way to pass it SCSI commands

that it could then transfer to the target. To accomplish this,

we wrote a simple interpreter to drive the initiator. This in-

terpreter reads commands from standard input and performs

basic actions, such as logging into a target with a new iSCSI

connection, sending a SCSI command to the target, and per-

forming a SCSI READ or WRITE operation. This simple

interpreter allows us to write scripts that emulate a real SCSI

session on top of the user-space SCSI initiator. In addition,

these scripts collect timing information.

2.5. Adding iSER Support

There are a handful of RDMA interfaces that pro-

vide POSIX socket-like abstractions to communicate with

RDMA hardware. This type of abstraction is advantageous

because most programmers are familiar with the socket

communication paradigm. A group called the OpenFab-

rics Alliance (OFA) [1] provides a free software stack with

a socket-like abstraction layer called the Communication

Manager Abstraction (CMA), along with a verbs layer that

is used to perform data transfers over RDMA hardware (to-

gether these pieces are referred to as the OFA stack or the

OFA API). The OFA stack has been growing in popularity

due to its active development community and inclusion in

the Linux kernel. In addition, the OFA stack also provides

a user-space library that allows user-space applications to

use its API to interface directly with RDMA hardware. We

chose to use the OFA API for this project because of its

availability, its applicability, and its growing popularity.

The iSER layer we modified was taken from the OpenIB

iSER target project [14]. This code was given to the OpenIB

group under a dual BSD/GPLv2 license, and therefore was

freely available. In addition, an older version of this same

iSER implementation was used in a previous, unsuccessful,

attempt at adding iSER to UNH-iSCSI [9], so UNH-iSCSI

1The kernel-space UNH-iSCSI initiator registers itself with the operat-

ing system as a Host Bus Adapter (HBA).

already had some support for this iSER interface2. In order

to use this OpenIB iSER layer, we needed to make many

modifications, including moving it to user-space and modi-

fying its lower layer interface to use the OFA stack instead

of the kDAPL interface [4].

During this project, we encountered two major problems

implementing iSER as defined in the IETF iSER standard

[7] with the currently available RNIC hardware and the

OFA stack:

1. According to the iSER standard, an iSCSI Login

should take place in “normal” TCP streaming mode

in order to negotiate the use of the RDMA extensions

for the new connection. If both the target and initiator

agree, this connection should transition into RDMA

mode between the end of the iSCSI Login phase and

the start of Full Feature Phase. However, current RNIC

hardware does not support such a transition. There-

fore, we needed to add new iSER operational primi-

tives to bring up a connection in RDMA mode. This

makes moot the Login phase negotiations about the use

of RDMA extensions.3

2. iSER for iWARP assumes that a buffer can be adver-

tised with two pieces of information (the length of

the buffer and an opaque handle that grants access to

it). The OFA stack and current RNIC hardware re-

quire that a buffer advertisement actually convey three

pieces of information (the length, the opaque handle

and a base address). Unfortunately, the standard iSER

header for iWARP does not allow space for this extra

address. Therefore, we needed to add header fields to

accommodate this 64-bit value.

There were also some minor mismatches between the

iSER standard and the functionality provided by the OFA

stack and iWARP hardware. These are due to the fact that

the OFA stack was originally designed for InfiniBand [2]

and was only later adapted to iWARP. The differences be-

tween the underlying InfiniBand definitions and the iWARP

definitions have not been completely reconciled.

2.6. Moving Back into the Kernel

The advantage of having our code run in kernel-space is

that we can send and receive SCSI commands to and from

the Linux SCSI mid-level. This means that our iSCSI target

can use a real disk, and the iSCSI initiator can receive SCSI

commands passed down from the Linux virtual file system.

2The iSER version that was used by the previous attempt was not used

in this project because of licensing issues.
3When opening a new RDMA connection, the RDMA standard allows

for one exchange of private data, but this facility is inadequate to handle a

full iSCSI Login phase negotiation.

Unlike the user-space version, the kernel-space iSCSI ini-

tiator registers itself with the operating system as a Host

Bus Adaptor and can provide the user with access to a real

disk attached to a target. This setup allows us to explore

our implementation in a real iSCSI environment (with no

emulation). This also gives us a real working product that

people can freely utilize for high-performance storage net-

working.

Since we chose to implement a Linux-kernel compati-

ble API for our user-space application, we did not need

to change most of our code to compile in the Linux ker-

nel. There are, however, some differences between the OFA

user-space API and the OFA kernel-space API. Therefore,

we created an abstraction layer on top of these two OFA in-

terfaces so that our iSER layer could use most of the same

code for both user-space and kernel-space. Although this

small layer is needed mainly to abstract function and type

names, there is some more complexity added for event noti-

fication and memory registration (which are handled differ-

ently in the kernel).

We encountered a large number of difficulties with some

of differences between the two OFA interfaces when build-

ing our user-space/kernel-space abstraction layer. The

kernel-space interface uses call-back functions to notify the

user of events, whereas the user-space interface uses com-

pletion queues and polling. The kernel-space interface also

handles memory registration differently, because the ker-

nel does not use virtual user-space addresses for memory

buffers. Since kernel code is not offered as much protection

as user-space applications, these differences were difficult

to find and fix.

3. Results

After we completed our iSER implementation and got it

running in the Linux kernel, we performed a few experi-

ments to evaluate the throughput with the following config-

urations, all utilizing MEMORYIO mode:

• iSER-assisted kernel-space target and initiator over

iWARP RNICs.

• Traditional (unassisted) iSCSI kernel-space target and

initiator over unmodified TCP/IP.

• iSER-assisted user-space target and initiator over

iWARP RNICs.

• Traditional (unassisted) iSCSI user-space target and

initiator over unmodified TCP/IP.

All the graphs shown in this section used the following

negotiated iSCSI parameter values:

• MaxRecvDataSegmentLength=512KB

 0

 2000

 4000

 6000

 8000

 10000

 0.1 1 10

T
h
ro

u
g
h
p
u
t (

M
eg

ab
it

s/
se

co
n
d
)

Size (Megabytes)

Kernel-Space iSCSI Reads Over 10 Gigabit Ethernet

Theoretical Max RDMA Throughput (9363 Megabits/sec)

iSER-assisted iSCSI Over iWARP/TCP

Traditional (Unassisted) iSCSI Over TCP

Figure 2. Kernel-space iSCSI Read Throughput

• MaxBurstLength=512KB

• InitiatorRecvDataSegmentLength=512KB

• TargetRecvDataSegmentLength=512KB

• InitialR2T=Yes

• ImmediateData=No

The latter two parameter values were chosen to pre-

vent use of iSCSI immediate and unsolicited data, because

the current iSER implementation does not properly han-

dle immediate and unsolicited data. The first four pa-

rameter values were chosen because 512KB is the largest

SCSI data transfer size generated by the Linux SCSI mid-

level when it segments large data transfers into multiple

SCSI Read or Write CDBs. Smaller values were not

tried because previous work on iSCSI without iSER [13]

demonstrated that large values for these parameters pro-

duced better performance. Note that InitiatorRecvDataSeg-

mentLength and TargetRecvDataSegmentLength are appli-

cable only in iSER-assisted mode.

It should be noted than when using iSER, the iSCSI

R2T, DataIn and DataOut PDUs never appear on the wire

between the two communication endpoints. Rather, the

iSER-assisted iSCSI target maps each DataIn PDU onto an

RDMA Write operation that moves the data (that would

have been contained in the DataIn PDU) directly into the

initiator’s memory via the RNIC. Similarly, the iSER-

assisted iSCSI target maps each R2T PDU onto an RDMA

Read operation, which moves all the data (that would have

been requested in the R2T) directly from the initiator’s

memory into the target’s memory via the RNIC. In non-

iSER-assisted mode, the data transfered by this RDMA read

operation would have been carried in DataOut PDUs sent by

an initiator.

We used MEMORYIO mode to demonstrate the

throughput of the iSER protocol without the overhead of a

disk drive, since for this project, we were mainly interested

in demonstrating the benefits of using RDMA hardware to

assist an iSCSI connection. Overhead introduced by a disk

drive is independent of the performance of the iSCSI pro-

tocol itself. In any case, all disk drives available to us at

present are too slow to demonstrate the throughput possible

with 10GigE RNIC hardware.

The computers used to perform these evaluations con-

tained four Intel 2.6GHz, 64-bit processor cores with a total

of four gigabytes of main memory. We used the Red Hat

Enterprise Linux operating system version 5 with version

1.3 of the OpenFabrics Enterprise Distribution. The ker-

nel version of the systems, as reported by the uname -a

command, was “Linux 2.6.18-8.el5” with Symmetric Mul-

tiprocessing support enabled. The hardware RNIC on each

machine was a 10GigE Chelsio R310E-CXA that plugs in

to a PCI Express 8X slot and fully offloads the iWARP stack

from the CPU. No intervening switch was used – the RNICs

in the two machines were connected back-to-back with CX4

copper cable.

In all the graphs shown below, the throughput rate is cal-

culated for the user-level payload only and is shown on the

y-axis; the user-level payload size is plotted in logarithmic

scale on the x-axis. This payload is the data supplied by

or delivered to a user-level application – all protocol header

overhead at all levels is excluded from the payload. How-

ever, the time used in the rate calculations necessarily in-

cludes all overheads, so the maximum user-level payload

throughput possible on a 10GigE link using standard 1500

 0

 2000

 4000

 6000

 8000

 10000

 0.1 1 10

T
h
ro

u
g
h
p
u
t (

M
eg

ab
it

s/
se

co
n
d
)

Size (Megabytes)

Kernel-Space iSCSI Writes Over 10 Gigabit Ethernet

Theoretical Max RDMA Throughput (9363 Megabits/sec)

iSER-assisted iSCSI Over iWARP/TCP

Traditional (Unassisted) iSCSI Over TCP

Figure 3. Kernel-space iSCSI Write Throughput

byte Ethernet frames is about 9.36 Gbits/s – the rest of the

bandwidth is unavailable to user payload because it is used

by headers added by each protocol layer in the network

stack.

3.1. Kernel-Space Throughput

Figure 2 shows that the iSER-assisted iSCSI Read

throughput surpasses that of a traditional iSCSI implemen-

tation for all payload sizes. The improvement due to iSER-

assisted iSCSI increases rapidly with an increase in transfer

size below 2MB, because, as the transfer sizes increase, the

constant overhead involved in setting up an RDMA transfer

becomes relatively less significant than the benefits of off-

loading and zero-copy transfers. Transfer sizes greater than

2MB show a more constant throughput improvement. The

throughput falls short of the maximum payload through-

put possible with a 10GigE network due to the following

sources of extra overhead:

• Ethernet, TCP/IP and RDMA header bytes sent on the

wire use a portion of the 10GigE bandwidth, reducing

the amount that is available for payload data.

• iSCSI Command and Response PDUs that are trans-

mitted for each 512KB of data also use a portion of the

bandwidth, further reducing that available for payload

data.

• CPU processing of each iSCSI Command and Re-

sponse PDU on both the target and initiator increases

the latency of the transfer and correspondingly reduces

the throughput.

Figure 3 shows that the iSER-assisted iSCSI Write

throughput surpasses that of traditional iSCSI. In this fig-

ure, we also see a steep climb in throughput until about

2MB. This happens as the overhead of setting up an RDMA

transfer becomes less significant with respect to the size of

the data transfer. For transfer sizes greater than 2MB the

throughput flattens out and does not achieve the maximum

capacity possible with a 10GigE connection. Additionally,

this figure shows that Write throughput is not quite as good

as Read throughput. One potential reason for this is because

iSER-assisted iSCSI Writes are mapped to RDMA Read op-

erations. Each RDMA Read operation consists of a Read-

Request/ReadResponse message exchange. Since the Linux

kernel will not build a SCSI command that contains more

than 512KB of data, these ReadRequest/ReadResponse ex-

changes happen twice per megabyte transferred, in addition

to all of the other overhead mentioned previously.

3.2. User-Space Throughput

Figure 4 shows that the throughput of user-space, iSER-

assisted iSCSI Writes ramps up steeply for transfer sizes

of under 1MB, but then flattens out at just over 8800

Megabits/sec, which is about 94% of the 9363 Megabits/sec

maximum payload throughput possible with a 10GigE net-

work. The user-space results shown in Figure 4 demon-

strate noticeably better performance than the kernel-space

results shown in Figure 3 (8800 Megabits/sec vs 7700

Megabits/sec).

Figure 5 plots SCSI Write throughput performance using

the four combinations of user-space and kernel-space with

target and initiator. This figure shows that the most limiting

agent is the kernel-space iSCSI initiator, as both of the runs

 0

 2000

 4000

 6000

 8000

 10000

 0.1 1 10

T
h
ro

u
g
h
p
u
t (

M
eg

ab
it

s/
se

co
n
d
)

Size (Megabytes)

User-Space iSCSI Writes Over 10 Gigabit Ethernet

Theoretical Max RDMA Throughput (9363 Megabits/sec)

iSER-assisted iSCSI Over iWARP/TCP

Traditional (Unassisted) iSCSI Over TCP

Figure 4. User-space iSCSI Write Throughput

 0

 2000

 4000

 6000

 8000

 10000

 0.1 1 10

T
h
ro

u
g
h
p
u
t (

M
eg

ab
it

s/
se

co
n
d
)

Size (Megabytes)

iSER-Assisted iSCSI Writes Over 10 Gigabit Ethernet

Theoretical Max RDMA Throughput (9363 Megabits/sec)

User Initiator Kernel Target

User Initiator User Target

Kernel Initiator Kernel Target

Kernel Initiator User Target

Figure 5. Hybrid User/Kernel-Space iSER Write Operation Throughput

in which it was used exhibit significantly lower throughput

than the two runs with the user-space initiator.

Our initiator performs significantly better in user-space

than in kernel-space because in user-space it does not use

multiple SCSI commands for each data transfer. In kernel-

space, the read and write system calls are passed down

from the Linux file-system layer and eventually to the Linux

SCSI mid-level. The SCSI mid-level builds a set of SCSI

CDBs that it queues up for the UNH-iSCSI initiator to per-

form the actual data transfer operations. The maximum

size SCSI CDB that the Linux SCSI mid-level generates

is 512KB. Thus for each megabyte transferred, the mid-

level generates two SCSI CDBs, the initiator transmits two

iSCSI Command PDUs (one for each CDB), and the target

performs two transfer operations and sends two iSCSI Re-

sponse PDUs. It is also important to note that the iSCSI

initiator only sends a single command at a time to the iSCSI

target, so multiple commands are not being handled in par-

allel.

In user-space, the UNH-iSCSI initiator script performs

data transfers by building SCSI CDBs that are all the exact

size of the transfer. This means that for each transfer, re-

gardless of its size, there is only a single SCSI CDB, a sin-

gle iSCSI Command PDU, a single transfer operation, and a

single iSCSI Response PDU. Thus, for a 12MB transfer, the

kernel-space implementation will transmit 24 SCSI CDBs,

perform 24 data transfers and send 24 responses, whereas

the user-space implementation will only use a single SCSI

CDB, data transfer and response.

4. Conclusion and Future Work

The goal of this project was to implement an iSER-

assisted iSCSI solution for RDMA over a 10GigE network

and to evaluate its performance. In order to accomplish this

goal, we added support to the UNH-iSCSI reference imple-

mentation for iSER extensions to the iSCSI protocol. This

paper has described the approach we took and some of the

difficulties encountered. We also presented results of a set

of throughput evaluations which show that the iSER exten-

sions enable iSCSI software together with a hardware RNIC

to make nearly full use of a 10GigE network.

The performance analysis in this paper is just the begin-

ning of the possible analysis that can be done. Initially we

concentrated only on throughput, but clearly latency and

CPU utilization are also important. In addition, the many

protocol layers offer various parameters that can be changed

and the resulting performance compared. We only tested

with 1500-byte Ethernet frames, but the software and hard-

ware can equally well utilize 9000-byte Ethernet frames,

which should show better performance since the overhead

is cut by a factor of 6. A comparison between iWARP and

InfiniBand would also be interesting, and one of the ben-

efits of designing software based on the OFA stack is that

our implementation should run over both technologies. Fi-

nally, we need to run some comparisons against available

ASIC-based TOE/iSCSI acceleration adaptors, which pro-

vide a fully offloaded, 10GigE-based hardware alternative

to iWARP RNICs.

The source for this project, both user-space and kernel-

space versions, is freely available under the GPL open-

source license at http://sourceforge.net/projects/unh-iscsi.

References

[1] O. F. Alliance. http://www.openfabrics.org.
[2] I. T. Association. Infiniband Architecture Specification ver-

sion 1.2.1.

[3] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier.

Marker pdu aligned framing for tcp specification. RFC 5044

(Standards Track), Oct. 2007.

[4] DAT-Collaborative. kDAPL: Kernel Direct Access Program-

ming Library, June 2002.

[5] D. Delessandro, A. Devulapalli, and P. Wyckoff. Design and

Implementation of the iWarp Protocol in Software. PDCS,

Nov. 2005.

[6] J. L. Hufferd. iSCSI The Universal Storage Connection. Ad-

dison Wesley, 2003.

[7] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur, H. Shah, and

P. Thaler. Internet Small Computer System Interface (iSCSI)

Extensions for Remote Direct Memory Access (RDMA).

RFC 5046 (Standards Track), Oct. 2007.
[8] A. Palekar, A. Chadda, N. Ganapathy, and R. Russell. De-

sign and implementation of a software prototype for storage

area network protocol evaluation. In Proceedings of the 13th

International Conference on Parallel and Distributed Com-

puting and Systems, pages 21–24, Aug. 2001.

[9] M. Patel and R. Russell. Design and Implementation of

iSCSI Extensions for RDMA, Sept. 2005.

[10] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia.

A remote direct memory access protocol specification. RFC

5040 (Standards Track), Oct. 2007.

[11] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and

E. Zeidner. Internet Small Computer Systems Interface

(iSCSI). RFC 3720 (Proposed Standard), Apr. 2004. Up-

dated by RFCs 3980, 4850.

[12] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct data

placement over reliable transports. RFC 5041 (Standards

Track), Oct. 2007.
[13] Y. Shastry, S. Klotz, and R. Russell. Evaluating the Effect of

iSCSI Protocol Parameters on Performance. In Proceedings

of the IASTED International Conference on Parallel and

Distributed Computing and Networks (PDCN 2005), pages

159–166, Feb. 2005.

[14] Voltaire. Open source iSER code, at

https://svn.openfabrics.org/svn/openib/gen2/.

[15] F. Xu and R. Russell. An architecture for public internet

disks. In Proceedings of the 3rd International Workshop on

Storage Network Architecture and Parallel I/O (SNAPI05),

pages 73–80, Sept. 2005.

