An Architecture for Public Internet Disks

Fanny Xu and Robert D. Russell
Computer Science Department
University of New Hampshire

Durham, NH 03824, USA
email: {fx,rdr} @cs.unh.edu

Abstract tween a host processor and 1/0O devices. iSCSI [2]
is an encapsulation protocol that replaces the SCSI
Because iSCSI technology enables a local SCSI hbat with a TCP/IP network, thereby eliminating dis-
to exchange SCSI commands and data with a remtatace limitations between the iSCSI host “initiator”
SCSI target device over a TCP/IP network, it is poand the iISCSI I/O device “target”. It also enables
sible for independent hosts to directly access indero or more hosts to share the same iSCSI target,
pendent storage devices over the global Interneteach host connecting to the target via its own TCP
the same manner as they access locally attached guianection.
vate SCSI disk devices, i.e., without any intervening iSCSI is mechanism for transporting SCSI com-
servers. We call storage devices accessible in thiands and data — it has no notion of files, directo-
manner “Public Internet Disks” (PIDs). ries, etc. It does nothing to manage blocks or the
This paper discusses an architecture to implemeontents of blocks, nor does it control how multi-
PIDs. The design involves a balance between pge initiators access the blocks — it simply transports
cessing that can be done on the hosts independetitgm. Each host views an iSCSI target as if it were a
of each other, and processing that is best done logal disk device under total control of that host’s op-
the storage side of the network. Our approach dérating system. With this view, two or more hosts can
fers from previous proposals in that it requires rghare the same target as long as all blocks on the disk
change to either the SCSI or iISCSI standards; rathane read-only, but chaos will result when one or more
it utilizes extensibility features of the existing iISCSof the hosts is allowed to write blocks. For example,
protocol. In addition, we introduce a novel lockingach host’s operating system will allocate blocks on
mechanism that eliminates the need for communidhe disk without regard to allocations performed by
tion between hosts when resolving contention. the other hosts, resulting in corrupted block alloca-
tion tables and potential allocation of the same block
multiple times. In addition, local caches on some
1 Introduction hosts will quickly become out of sync with the disk
device, since iSCSI has no provision for maintain-
SCSI[1] is both a well-established standard protodolg cache consistency across hosts (it knows nothing
and a set of standard buses for communication faout caches).

By itself, iISCSI is incapable of coherently sharinthe target, which could potentially become a bottle-
a modifiable target disk between multiple platformgeck that limits scalability. There is also the poten-
Several solutions to this problem are possible. Thal for extra communication between the target and
most common one, used in many clusters, is to itest platforms. To minimize this, we have devel-
pose a higher-level synchronization mechanism tlmgded a new locking mechanism that in most cases
requires either separate communication channels pigigy-backs on the 1/0O operations, eliminating the
tween the platforms in the cluster, or communicatioreed for extra iISCSI exchanges. This is discussed in
with an intermediate server platform that synchr&ection 3. Section 4 indicates future areas of work.
nizes disk access to avoid conflicts. A combination
of both approaches is also possible. An alternative
approach is to modify the target disk by providing Background
synchronization and conflict resolution mechanisms
that can be used by the file systems on the clustégngipani [5] was one of the first cluster file sys-
platforms to synchronize themselves. There hal@ms. It uses a token-based distributed lock man-
been at least two proposals for modifications to SC&er, with one lock per file, directory or symbolic
along these lines: DLOCKs [3], and the recent stakink. Deadlocks are avoided by globally ordering
dard for object storage [4], both of which introduct®cks and acquiring them in two phases: the first
new SCSI commands. to identify the needed locks, the second to sort the

In this paper we propose a new approach that dacks by the file identification number. Write-ahead
lizes provisions in the iSCSI standard plus additiontigging of metadata is used for failure recovery.
functionality in the iSCSI target to accomplish syn- The Global File System (GFS) [6] is a file system
chronization and conflict resolution without modififor computer clusters based on SCSI and extensions
cations to SCSI and without additional communic#e SCSI that provide a read-write locking mechanism
tion between platforms sharing the disk. The bagialled DLOCKSs [3], with one DLOCK per file. Con-
idea is similar to that of an object store: to split thiention for locks is resolved by communication be-
work of maintaining a file system so that part of thiwveen the hosts. A lock holder has a lease which
work traditionally done by the operating system amust be periodically renewed by the holder or else
the initiator is now done on the target. Block allocdiost failure is assumed and recovery is begun by one
tion, metadata management, and directory managéthe other hosts using journals.
ment are key functions relegated to a new module onThe Global Parallel File System (GPFS) [7] is
the target side of an iSCSI connection. This movasparallel file system for supercomputers based on
the need for conflict resolution closer to the conflicomputer clusters. Data locking is controlled by dis-
source, namely the target disk itself, which permitsbuted locking that consists of a centralized global
faster resolution with fewer network exchanges. Itick manager, elected from the set of hosts in the
also eliminates the need for independent communluster, that coordinates the actions of local lock
cation between hosts, allowing them to be unawarenagers, one on each host. Each block in a file can
of each other. Of lesser importance in clusters, tpstentially have its own lock, which permits multi-
is crucial in the Internet, where hosts may be inaple writers of the same file, provided they are writing
cessible to each other. different parts of it. For each file, metadata locking

The cost of this approach is added processing and management is controlled by dynamically elect-

2

ing one of the nodes accessing that file as the “me&- Desi gn
node” for that file. This metanode merges all meta-

data changes from separate hosts and updates that

file's inode in an atomic fashion. Host failure recov-

ery is accomplished by one of the remaining hosts Usgw
that reruns the failed host’s recovery log.

Storage Tank [8] is a distributed file system for ar- = [} Qk
bitrary collections of hosts. It has two separate paths L& I ser 25¢
to storage — hosts must go through special server
nodes for file metadata management, but can directly
access file data over a separate storage area network.
There are three different data locking protocols, de-
pending on the application’s needs. Locks can be
pre-empted (but a request for pre-emption can be re-
fused by a lock holder), and are designed to maxi-
mize sharing local to one host rather than between
hosts. Host failure is detected by a lease mechanism,
and recovery is accomplished by one of the remaifiyyre 1: General overview of a Public Internet Disk
ing hosts which polls the others in order to recon-
struct the pre-failure state of the failed host.)))

Antara [9] is a prototype storage system based Or_1F|gure 1 shows a picture of one Public Internet
the concept of an “object store” [10]. The key ideRisk. There are three_ fundamental components, all
of an object store is to change the abstraction pReNnected to the public Internet. The “target” repre-
sented by a storage device from an array of unRents the storag_e device; each “initiator” represents a
lated, fixed-size blocks to a collection of unrelatddPSt Platform with one or more users; and the “ad-
objects of arbitrary size. This is done by introducingn” represents a security access control module.
an “object manager” which locates objects and sy his module may be co-located at the target, but is
chronizes access to them in a secure fashion. HJ8'€ likely torun on a separate trusted host platform
must go through the object manager to gain acc&S§inected to the target by a secure link.
rights to an object, but data and metadata is dealOur design for PIDs has been most heavily influ-
with directly between the host and the storage denced by the object store paradigm. The main differ-
vice via operations on objects (for example, wheance is that rather than requiring a new set of SCSI
transferring data, the host specifies the amountaaimmands that require new target disk controllers
data and the offset to the data within the object, biat implement them, we envision using the existing
it does not deal with allocation or mapping of logicgbCSI block storage commands in conjunction with
blocks within the object onto the physical blocks ia small set of extensions to iISCSI. The modifica-
the store). Management of the metadata for the dlmns are located in the iISCSI (software) interfaces on
ject is incorporated into the storage device. A stathe initiator and target, not on the disks or disk con-
dard set of SCSI operations for object-based storagalers. As when using object store, the file system
devices has been developed [4]. on the initiator must also be modified — see Figure 2.

s
0

Internet

- trusted link

3.1 Communications Environment Initiator Target

Because the global Internet is a hostile environmept =" ~"""**"°"®
our design requires that there be no communicati “fe setem Disk
between hosts using a PID — all communication f
accessing or managing the PID occurs only betwe
a host and the target. For security purposes, co
munication between a host and a trusted admin (&
between that admin and the target) is also require TCP TCP
The iSCSI protocol is an ideal transport mech
nism for PIDs because it already exists as an IE]
standard [2], because it works over the global Intg
net, because it already has mechanisms for transy
security (IPSec) and access authorization (CHAP),
because it is becoming an integral part of most opigure 2: General architecture for implementing
erating systems, and because it contains extendidsblic Internet Disks using iSCSI

mechanisms by which it can handle the special re-

quirements of PID commun_lcauon in-a Stamd"’“]zglamied by a credential issued by this admin. This
manner. It enables us to d_eflr_le new keys for negQz jential is based on a cryptographic one-way hash
tiating parameter and security information and to dﬁinction [11], that permits the target to efficiently

fine additional header fields that can accompany d@@ify the requested operation. Keys are issued via
transfer and control operations in order to carry ®X-secure link between target and admin

tra security and contention resolution information. It
also provides message types for sending additional
status and control information in both directions.

SCsi SCSI

modified iSCSI ISCSI session modified iSCSI

Link Link

Overview

There are two types of blocks stored on a target disk:
3.2 Security data blocks and metadata blocks. The target's modi-
fied iISCSI layer controls all block allocation.
There are three aspects of PID security: network seSets of data blocks are read and written directly
curity, storage security and access security. by host initiators using SCSI read and write com-
Network security is handled by IPSec, which isiands supplemented with additional iISCSI control
utilized by iISCSI. The integrity of data in transit cainformation. Data blocks are always part of some
be ensured by use of an iISCSI CRC32C. file, and are referenced by relative block numbers
Storage security is handled by having the host fikgthin that file. The target's modified iSCSI layer
system encrypt and decrypt its data, so that the targeips these onto absolute disk block numbers.
does not know the encryption keys and methods. Manipulation of metadata blocks is done exclu-
Access security is handled by storing access aively by the target, in response to commands from
thentication and authorization information in a sefnitiators that reference metadata blocks by absolute
arate security module, shown as the “admin” in Figlisk block numbers. Directories are considered to
ure 1. Every operation sent to the target is is accotre metadata blocks, so the target maintains them.

4

Each file or directory is defined by one metadatmnal post-condition of “unchanged”, an administra-
block (analogous to an inode in Unix). A metadata/e pre-condition of “unneeded”, and an administra-
block is partitioned into “operational” and “administive post-condition of “unchanged”.
trative” components. Operational metadata includesif a read command is part of an update transaction,
information needed by a target to map blocks in thlee read’s data block pre-condition is “exclusive” and
file onto disk data blocks, to map names in a direttie post-condition is “unchanged”. The subsequent
tory onto a metadata block, etc. The target implicithyrite command would also have a data block pre-
changes this information as part of many operatiort®ndition of “exclusive”, with a post-condition of
such as create, read, etc. Administrative metadatiachanged” if the initiator plans further reads or
includes ownership and other information to contrelrites on this block, “demote” if the initiator will
access to the file. It is changed only by explicit concache the block, or “release” if not. All commands
mands from initiators with appropriate privileges. in the update have the same two metadata pre- and
To resolve access contention, each command frpast-conditions as for a normal read. A write com-
an initiator provides the target with one or mormand needs “exclusive” access to operational meta-
block references, each accompanied by access “mtata only when it changes a file's length.
conditions” that must be satisfied before the com-The POSIX API for I/O operations does not allow
mand is passed on to the target's SCSI layer &fuser to explicitly specify pre- and post-conditions.
any pre-condition is not met, the command is efherefore, the PID file system must infer the values
queued until it can be met), and access “postem the operation and its context (i.e., how a file
conditions” that indicate what type of access the tatas opened, etc.). For example, the file system can
get should retain between this initiator and this blo&asily distinguish between writes that update existing
after completing the command. The values for prblocks and those that append to the end of a file, in
conditions, in order of decreasing “strength”, arerder to set the operational metadata pre-condition to
“exclusive”, “shared”, “unneeded”. The values fofshared” for updating, “exclusive” for appending.
post-conditions are: “unchanged”, “demote”, “re- An initiator wishing to cache a block after com-
lease”. Stronger access can never be acquired hyetion of a command must specify the proper post-
post-condition, so that establishing a post-conditi@ondition, which implies that the target must main-
can never cause a blocking situation. Referencegdin state information. Whenever an initiator flushes
sets of data blocks require one pre- and one pastblock from its cache, it must inform the target.
condition per set. Metadata blocks require separ@enilarly, before an initiator can modify a block,
pre- and post-conditions for both the operational atige target must send iISCSI asynchronous notification
administrative components. messages to all initiators that have cached that block,
A normal read command from an initiator wilinstructing them to flush that buffer from their cache.
contain a reference to a set of data blocks within a
file, a pre-condition of “shared” for that set and
post-condition of either “unchanged” if the initiator -
will cache the blocks after transfer from the targeiy order to keep track of the access state of data and
or “release” if it will not. The command must alsanetadata blocks, the target instantiates locks associ-
specify the number of the file’'s metadata block, witited with a set of blocks whenever a command on
an operational pre-condition of “shared”, an oper#hat set is queued or in progress, or whenever state

Contention Resolution

5

is retained due to a previous post-condition. A skt queue.
of data blocks has one associated lock, a metadat&. If L's state is “shared” and s is “shared”, no
block has two. The lock states are those of a classltange to L's state, no queuing.
read-write lock: “exclusive”, “shared”, “unlocked”. 6. If another command holding this lock is cur-
Each pre- and post-condition effects one lockently in progress, append C to end of L's queue.
To avoid deadlocks, circular dependencies betweer?. If L is held for “exclusive” access by another
locks are removed by the following rules. For eaghitiator Y, append C to end of L's queue, send notifi-
operand in a command, locks are ordered such thation to Y to “demote” (if s is “shared”) or “release”
any operational metadata lock is processed firft,s is “exclusive”) this block.
then any administrative metadata lock, then any dateB. If L is held for “shared” access, send “release
block lock. If a command has several metadatatifications to each other initiator Y currently shar-
operands (for example, when a file is moved froing L, set L's state to “exclusive”, no queuing.
one directory to another), the metadata blocks areThere are two situations when a target sends a no-
ordered by their absolute block numbers. A comtification to another initiator Y during pre-condition
mand is delivered to the target's SCSI layer only girocessing, both of which occur when no in-progress
ter all locks for all operands are in the desired staammand currently holds L and L's queue is empty:
A blocked command is queued on exactly one lockhen Y has “exclusive” access; or when Y has
Post-conditions are applied in the reverse order “shared” access and s is “exclusive”.
pre-condition application. As part of acquiring alock When notified to “release” a “shared” block, an
for an initiator, the target may send notification megaitiator must flush this block from its buffer cache,
sages to other initiators and may change it's retainiedt it sends no reply to the target because the tar-
strength between that lock and those initiators. get changed that initiator’s retained strength to “un-
The decision sequence for processing a pteeked” when sending the notification. When noti-
condition (other than “unneeded”, which needs ri®d to “demote” or “release” an “exclusive” block,
locking) of command C from initiator X at strengthan initiator must respond with a new command on
s (“exclusive” or “shared”) for lock L is given nextthis block having a pre-condition of “exclusive” and
(processing completes as soon as one of these actmmsppropriate post-condition, and must also flush a
is taken). C is considered “in progress” for lock L ifeleased block from it's cache. This command will
its pre-condition for L has been satisfied but its pogtimp ahead of commands from any other initiator in
condition for L has not been processed. During thise queue for this lock (see step 3 above). An ini-
time, X’s retained strength for L equals L's state. tiator asked to “demote” or “release” an “exclusive”
1. If L does not exist, create it, set its state to s, fubock is given a deadline by which to rely — if this is

queuing. deadline is not met, the target considers the initiator
2. If Us state is “unlocked”, set its state to s, nto be dead and forcibly releases all locks held by it.
queuing. In SCSI and iSCSI, completion of every command

3. If L is held for “exclusive” access by X, andC requires the target to send a reply to the initiator X,
no command holding L is currently in progress, arafter which it uses the following decision sequence to
either s is “exclusive” or L's queue is empty, set L'process post-condition p for each lock L held by X
state to s, ho queuing. with strength s while C was in progress, and to set

4. If U's queue is not empty, append C to end dhe retained strength r between X and L.

6

1. If sis “exclusive” and the first queued commanekquires “exclusive” access, send “release” notifica-
D is from X, set r and L’s state to D’s pre-conditiontion to all other initiators holding L, set L's state to
remove D from queue and continue D; “exclusive”, remove D from queue and continue D;
2. If s'is “exclusive” and p is “unchanged”, then(d) else, while the first queued command D requires
(@) if L's queue contains a command D from Xshared” access, set L’s state to “shared”, remove D
with pre-condition “exclusive”, remove the first sucfrom queue and continue D.
D from queue and continue D; (b) else if the first
gqueued com_manq requires “exclu.sive" access, se\;@ Performance Consider ations
“release” notification to X; (c) else if the first queued
command requires “shared” access, send “demofdte purpose of having separate block-level pre- and
notification to X. post-conditions for both data and two types of meta-
3. If sis “exclusive” and p is “demote”, set r andlata is to increase opportunities for fine-grained par-
L's state to “shared”, then: (a) if the first queuedllel access by different host initiators, to try to
command D requires “exclusive” access, send “rgHnimize the situations where contention may arise,
lease” natification to X, set r to “unlocked”, set L'sand to enable initiator-side caching without requiring
state to “exclusive”, remove D from queue and coimitiator-to-initiator communication for maintaining
tinue D; (b) else, while the first queued command €ache consistency. This enables different hosts to
requires “shared” access, remove D from queue agithultaneously read and/or write disjoint sets of
continue D. blocks in the same file, and enables one host to cache
4. If sis “exclusive” and p is “release”, set r andlata blocks as long as no other host attempts to write
L's state to “unlocked”, then: (a) if the first queuethose blocks.
command D requires “exclusive” access, set L's stateTo reduce the time and space required for iSCSI
to “exclusive”, remove D from queue and continutarget processing, block sizes should be large, 32K
D; (b) else, while the first queued command D re+r more, and directories are limited to a single block.
quires “shared” access, set L's state to “shared”, fewould also be beneficial to define more powerful
move D from queue and continue D. POSIX-level commands, for example, a “copy” that
5. If s is “shared” and p is “unchanged”: (ayvould not require data to cross the network but could
if commands holding L are in progress or if L'de performed entirely on the iSCSI target.
queue is empty, do nothing further; (b) else, if the The advantages of initiator caching must be
first gueued command D requires “exclusive” accesgeighed against the cost of bookkeeping and cache-
send “release” notification to all initiators holding Lflush notification imposed on both the initiator and
set L's state to “exclusive”, remove D from queue artdrget. Caching can be controlled dynamically by
continue D; (c) else, while the first queued commarbth initiator and target — the initiator through the
D requires “shared” access, remove D from queuse of appropriate post-conditions, the target through
and continue D. asynchronous notifications to initiators. Experimen-
6. If s is “shared” and p is “release”, set r tdation will be necessary to determine effective strate-
“unlocked”, then: (a) if commands holding L are imgies, but a simple one would be to limit caching to di-
progress, do nothing further; (b) else, if L's queue iectory metadata blocks, since they are used repeat-
empty and no other initiators hold L, set L's state tedly during path name resolution, while data block
“unlocked”; (c) else, if the first queued command Daching is often more speculative.

7

4 Summary and Future Work

Public Internet Disks are a new way of making in-
dependent storage devices directly available to in-
dependent hosts via the Internet without interven-
ing file servers. This paper describes an archite
ture for PIDs that partitions a traditional file system’s
functionality between the host and the storage de-
vice, and uses extension mechanisms in the iSCSI
protocol to carry additional information along with
traditional SCSI commands. A novel target locking[g]
mechanism based on pre- and post-conditions elimi-
nates the need for host to host communication.

Much work remains to be done to implement this
architecture and to evaluate and tune its performance
under various operating conditions. It would also be
desirable to formally specify the set of file syste
operations along with their pre- and post-conditions,
in order to be able to verify its completeness and cor-
rectness, and possibly to generate tools for interop-
erability testing and performance monitoring.

[8]
References

[1] T10 Technical Committee of the NCITS.

7] Frank Schmuck and Roger Haskin.

[4] T10 Technical Committee of the NCITS.

Object-based storage device commands (OSD).
Technical Report T10 Project 1355-D Revision
10, National Committee for Information Tech-
nology Standards, July 2004.

%-5] Chandramohan Thekkath et al. Frangipani: A

scalable distributed file system. Rnoceedings
of the 16th ACM Sympaosium on Operating Sys-
tems Principles, pages 224-237, October 1997.

Kenneth Preslan et al. Implementing journal-
ing in a linux shared disk file system. Rro-
ceedings of the 17th IEEE/8th NASA Goddard
Conference on Mass Storage Systems and Tech-
nologies, March 2000.

GPFS:
a shared-disk file system for large computing
clusters. InProceedings of the Conference on
File and Sorage Technologies (FAST' 02), Jan-
uary 2002.

Randal Burns. Data Management in a Dis
tributed File System for Sorage Area Net-
works. PhD thesis, University of California,
Santa Cruz, March 2000.

SAM2, SCSI architecture model — 2. Technicall®] Alain Azagury et al. Towards an object store. In

Report T10 Project 1157-D Revision 24, Na-
tional Committee for Information Technology
Standards, September 2002.

10
[2] J. Satran et al. Internet small computer syster%s]

interface (iISCSI). Technical Report RFC3720,
Internet Engineering Task Force, April 2004.

[3] Andrew Barry et al. An overview of version

0.9.5 proposed scsi device locks. Pnoceed-
ings of the 17th IEEE/8th NASA Goddard Con-
ference on Mass Sorage Systems and Tech-
nologies, pages 243-251, March 2000.

[11]

Proceedings of the 20th |EEE/11th NASA God-
dard Conference on Mass Sorage Systems and
Technologies, pages 165-176, April 2003.

Thomas Ruwart. OSD: a tutorial on object
storage devices. IProceedings of the 19th

| EEE/10th NASA Goddard Conference on Mass
Sorage Systems and Technologies, pages 21—
34, April 2002.

Hugo Krawczyk et al. HMAC: keyed-hashing
for message authentication. Technical Report
RFC2104, Internet Engineering Task Force,
April 2004.

