
An Architecture for Public Internet Disks

Fanny Xu and Robert D. Russell
Computer Science Department
University of New Hampshire

Durham, NH 03824, USA
email:{fx,rdr}@cs.unh.edu

Abstract

Because iSCSI technology enables a local SCSI host
to exchange SCSI commands and data with a remote
SCSI target device over a TCP/IP network, it is pos-
sible for independent hosts to directly access inde-
pendent storage devices over the global Internet in
the same manner as they access locally attached pri-
vate SCSI disk devices, i.e., without any intervening
servers. We call storage devices accessible in this
manner “Public Internet Disks” (PIDs).

This paper discusses an architecture to implement
PIDs. The design involves a balance between pro-
cessing that can be done on the hosts independently
of each other, and processing that is best done on
the storage side of the network. Our approach dif-
fers from previous proposals in that it requires no
change to either the SCSI or iSCSI standards; rather,
it utilizes extensibility features of the existing iSCSI
protocol. In addition, we introduce a novel locking
mechanism that eliminates the need for communica-
tion between hosts when resolving contention.

1 Introduction

SCSI [1] is both a well-established standard protocol
and a set of standard buses for communication be-

tween a host processor and I/O devices. iSCSI [2]
is an encapsulation protocol that replaces the SCSI
bus with a TCP/IP network, thereby eliminating dis-
tance limitations between the iSCSI host “initiator”
and the iSCSI I/O device “target”. It also enables
two or more hosts to share the same iSCSI target,
each host connecting to the target via its own TCP
connection.

iSCSI is mechanism for transporting SCSI com-
mands and data – it has no notion of files, directo-
ries, etc. It does nothing to manage blocks or the
contents of blocks, nor does it control how multi-
ple initiators access the blocks – it simply transports
them. Each host views an iSCSI target as if it were a
local disk device under total control of that host’s op-
erating system. With this view, two or more hosts can
share the same target as long as all blocks on the disk
are read-only, but chaos will result when one or more
of the hosts is allowed to write blocks. For example,
each host’s operating system will allocate blocks on
the disk without regard to allocations performed by
the other hosts, resulting in corrupted block alloca-
tion tables and potential allocation of the same block
multiple times. In addition, local caches on some
hosts will quickly become out of sync with the disk
device, since iSCSI has no provision for maintain-
ing cache consistency across hosts (it knows nothing
about caches).

1



By itself, iSCSI is incapable of coherently sharing
a modifiable target disk between multiple platforms.
Several solutions to this problem are possible. The
most common one, used in many clusters, is to im-
pose a higher-level synchronization mechanism that
requires either separate communication channels be-
tween the platforms in the cluster, or communication
with an intermediate server platform that synchro-
nizes disk access to avoid conflicts. A combination
of both approaches is also possible. An alternative
approach is to modify the target disk by providing
synchronization and conflict resolution mechanisms
that can be used by the file systems on the cluster
platforms to synchronize themselves. There have
been at least two proposals for modifications to SCSI
along these lines: DLOCKs [3], and the recent stan-
dard for object storage [4], both of which introduce
new SCSI commands.

In this paper we propose a new approach that uti-
lizes provisions in the iSCSI standard plus additional
functionality in the iSCSI target to accomplish syn-
chronization and conflict resolution without modifi-
cations to SCSI and without additional communica-
tion between platforms sharing the disk. The basic
idea is similar to that of an object store: to split the
work of maintaining a file system so that part of the
work traditionally done by the operating system on
the initiator is now done on the target. Block alloca-
tion, metadata management, and directory manage-
ment are key functions relegated to a new module on
the target side of an iSCSI connection. This moves
the need for conflict resolution closer to the conflict
source, namely the target disk itself, which permits
faster resolution with fewer network exchanges. It
also eliminates the need for independent communi-
cation between hosts, allowing them to be unaware
of each other. Of lesser importance in clusters, this
is crucial in the Internet, where hosts may be inac-
cessible to each other.

The cost of this approach is added processing on

the target, which could potentially become a bottle-
neck that limits scalability. There is also the poten-
tial for extra communication between the target and
host platforms. To minimize this, we have devel-
oped a new locking mechanism that in most cases
piggy-backs on the I/O operations, eliminating the
need for extra iSCSI exchanges. This is discussed in
Section 3. Section 4 indicates future areas of work.

2 Background

Frangipani [5] was one of the first cluster file sys-
tems. It uses a token-based distributed lock man-
ager, with one lock per file, directory or symbolic
link. Deadlocks are avoided by globally ordering
locks and acquiring them in two phases: the first
to identify the needed locks, the second to sort the
locks by the file identification number. Write-ahead
logging of metadata is used for failure recovery.

The Global File System (GFS) [6] is a file system
for computer clusters based on SCSI and extensions
to SCSI that provide a read-write locking mechanism
called DLOCKs [3], with one DLOCK per file. Con-
tention for locks is resolved by communication be-
tween the hosts. A lock holder has a lease which
must be periodically renewed by the holder or else
host failure is assumed and recovery is begun by one
of the other hosts using journals.

The Global Parallel File System (GPFS) [7] is
a parallel file system for supercomputers based on
computer clusters. Data locking is controlled by dis-
tributed locking that consists of a centralized global
lock manager, elected from the set of hosts in the
cluster, that coordinates the actions of local lock
managers, one on each host. Each block in a file can
potentially have its own lock, which permits multi-
ple writers of the same file, provided they are writing
different parts of it. For each file, metadata locking
and management is controlled by dynamically elect-

2



ing one of the nodes accessing that file as the “meta-
node” for that file. This metanode merges all meta-
data changes from separate hosts and updates that
file’s inode in an atomic fashion. Host failure recov-
ery is accomplished by one of the remaining hosts
that reruns the failed host’s recovery log.

Storage Tank [8] is a distributed file system for ar-
bitrary collections of hosts. It has two separate paths
to storage – hosts must go through special server
nodes for file metadata management, but can directly
access file data over a separate storage area network.
There are three different data locking protocols, de-
pending on the application’s needs. Locks can be
pre-empted (but a request for pre-emption can be re-
fused by a lock holder), and are designed to maxi-
mize sharing local to one host rather than between
hosts. Host failure is detected by a lease mechanism,
and recovery is accomplished by one of the remain-
ing hosts which polls the others in order to recon-
struct the pre-failure state of the failed host.

Antara [9] is a prototype storage system based on
the concept of an “object store” [10]. The key idea
of an object store is to change the abstraction pre-
sented by a storage device from an array of unre-
lated, fixed-size blocks to a collection of unrelated
objects of arbitrary size. This is done by introducing
an “object manager” which locates objects and syn-
chronizes access to them in a secure fashion. Hosts
must go through the object manager to gain access
rights to an object, but data and metadata is dealt
with directly between the host and the storage de-
vice via operations on objects (for example, when
transferring data, the host specifies the amount of
data and the offset to the data within the object, but
it does not deal with allocation or mapping of logical
blocks within the object onto the physical blocks in
the store). Management of the metadata for the ob-
ject is incorporated into the storage device. A stan-
dard set of SCSI operations for object-based storage
devices has been developed [4].

3 Design

Internet


trusted link


initiator A


initiator B

initiator C


initiator D


target


Admin


User Alice


User Bob

User Al
 User Mia


User Joe

User Mike


User Zoe


Figure 1: General overview of a Public Internet Disk

Figure 1 shows a picture of one Public Internet
Disk. There are three fundamental components, all
connected to the public Internet. The “target” repre-
sents the storage device; each “initiator” represents a
host platform with one or more users; and the “ad-
min” represents a security access control module.
This module may be co-located at the target, but is
more likely to run on a separate trusted host platform
connected to the target by a secure link.

Our design for PIDs has been most heavily influ-
enced by the object store paradigm. The main differ-
ence is that rather than requiring a new set of SCSI
commands that require new target disk controllers
to implement them, we envision using the existing
SCSI block storage commands in conjunction with
a small set of extensions to iSCSI. The modifica-
tions are located in the iSCSI (software) interfaces on
the initiator and target, not on the disks or disk con-
trollers. As when using object store, the file system
on the initiator must also be modified – see Figure 2.

3



3.1 Communications Environment

Because the global Internet is a hostile environment,
our design requires that there be no communication
between hosts using a PID – all communication for
accessing or managing the PID occurs only between
a host and the target. For security purposes, com-
munication between a host and a trusted admin (and
between that admin and the target) is also required.

The iSCSI protocol is an ideal transport mecha-
nism for PIDs because it already exists as an IETF
standard [2], because it works over the global Inter-
net, because it already has mechanisms for transport
security (IPSec) and access authorization (CHAP),
because it is becoming an integral part of most op-
erating systems, and because it contains extension
mechanisms by which it can handle the special re-
quirements of PID communication in a standard
manner. It enables us to define new keys for nego-
tiating parameter and security information and to de-
fine additional header fields that can accompany data
transfer and control operations in order to carry ex-
tra security and contention resolution information. It
also provides message types for sending additional
status and control information in both directions.

3.2 Security

There are three aspects of PID security: network se-
curity, storage security and access security.

Network security is handled by IPSec, which is
utilized by iSCSI. The integrity of data in transit can
be ensured by use of an iSCSI CRC32C.

Storage security is handled by having the host file
system encrypt and decrypt its data, so that the target
does not know the encryption keys and methods.

Access security is handled by storing access au-
thentication and authorization information in a sep-
arate security module, shown as the “admin” in Fig-
ure 1. Every operation sent to the target is is accom-

Public Internet Disk

File System


SCSI


modified iSCSI


TCP


IP


Link


Disk


SCSI


modified iSCSI


TCP


IP


Link


Initiator
 Target


iSCSI session


User Applications


Figure 2: General architecture for implementing
Public Internet Disks using iSCSI

panied by a credential issued by this admin. This
credential is based on a cryptographic one-way hash
function [11], that permits the target to efficiently
verify the requested operation. Keys are issued via
a secure link between target and admin.

3.3 Overview

There are two types of blocks stored on a target disk:
data blocks and metadata blocks. The target’s modi-
fied iSCSI layer controls all block allocation.

Sets of data blocks are read and written directly
by host initiators using SCSI read and write com-
mands supplemented with additional iSCSI control
information. Data blocks are always part of some
file, and are referenced by relative block numbers
within that file. The target’s modified iSCSI layer
maps these onto absolute disk block numbers.

Manipulation of metadata blocks is done exclu-
sively by the target, in response to commands from
initiators that reference metadata blocks by absolute
disk block numbers. Directories are considered to
be metadata blocks, so the target maintains them.

4



Each file or directory is defined by one metadata
block (analogous to an inode in Unix). A metadata
block is partitioned into “operational” and “adminis-
trative” components. Operational metadata includes
information needed by a target to map blocks in the
file onto disk data blocks, to map names in a direc-
tory onto a metadata block, etc. The target implicitly
changes this information as part of many operations,
such as create, read, etc. Administrative metadata
includes ownership and other information to control
access to the file. It is changed only by explicit com-
mands from initiators with appropriate privileges.

To resolve access contention, each command from
an initiator provides the target with one or more
block references, each accompanied by access “pre-
conditions” that must be satisfied before the com-
mand is passed on to the target’s SCSI layer (if
any pre-condition is not met, the command is en-
queued until it can be met), and access “post-
conditions” that indicate what type of access the tar-
get should retain between this initiator and this block
after completing the command. The values for pre-
conditions, in order of decreasing “strength”, are:
“exclusive”, “shared”, “unneeded”. The values for
post-conditions are: “unchanged”, “demote”, “re-
lease”. Stronger access can never be acquired by a
post-condition, so that establishing a post-condition
can never cause a blocking situation. References to
sets of data blocks require one pre- and one post-
condition per set. Metadata blocks require separate
pre- and post-conditions for both the operational and
administrative components.

A normal read command from an initiator will
contain a reference to a set of data blocks within a
file, a pre-condition of “shared” for that set and a
post-condition of either “unchanged” if the initiator
will cache the blocks after transfer from the target,
or “release” if it will not. The command must also
specify the number of the file’s metadata block, with
an operational pre-condition of “shared”, an opera-

tional post-condition of “unchanged”, an administra-
tive pre-condition of “unneeded”, and an administra-
tive post-condition of “unchanged”.

If a read command is part of an update transaction,
the read’s data block pre-condition is “exclusive” and
the post-condition is “unchanged”. The subsequent
write command would also have a data block pre-
condition of “exclusive”, with a post-condition of
“unchanged” if the initiator plans further reads or
writes on this block, “demote” if the initiator will
cache the block, or “release” if not. All commands
in the update have the same two metadata pre- and
post-conditions as for a normal read. A write com-
mand needs “exclusive” access to operational meta-
data only when it changes a file’s length.

The POSIX API for I/O operations does not allow
a user to explicitly specify pre- and post-conditions.
Therefore, the PID file system must infer the values
from the operation and its context (i.e., how a file
was opened, etc.). For example, the file system can
easily distinguish between writes that update existing
blocks and those that append to the end of a file, in
order to set the operational metadata pre-condition to
“shared” for updating, “exclusive” for appending.

An initiator wishing to cache a block after com-
pletion of a command must specify the proper post-
condition, which implies that the target must main-
tain state information. Whenever an initiator flushes
a block from its cache, it must inform the target.
Similarly, before an initiator can modify a block,
the target must send iSCSI asynchronous notification
messages to all initiators that have cached that block,
instructing them to flush that buffer from their cache.

3.4 Contention Resolution

In order to keep track of the access state of data and
metadata blocks, the target instantiates locks associ-
ated with a set of blocks whenever a command on
that set is queued or in progress, or whenever state

5



is retained due to a previous post-condition. A set
of data blocks has one associated lock, a metadata
block has two. The lock states are those of a classic
read-write lock: “exclusive”, “shared”, “unlocked”.

Each pre- and post-condition effects one lock.
To avoid deadlocks, circular dependencies between
locks are removed by the following rules. For each
operand in a command, locks are ordered such that
any operational metadata lock is processed first,
then any administrative metadata lock, then any data
block lock. If a command has several metadata
operands (for example, when a file is moved from
one directory to another), the metadata blocks are
ordered by their absolute block numbers. A com-
mand is delivered to the target’s SCSI layer only af-
ter all locks for all operands are in the desired state.
A blocked command is queued on exactly one lock.
Post-conditions are applied in the reverse order of
pre-condition application. As part of acquiring a lock
for an initiator, the target may send notification mes-
sages to other initiators and may change it’s retained
strength between that lock and those initiators.

The decision sequence for processing a pre-
condition (other than “unneeded”, which needs no
locking) of command C from initiator X at strength
s (“exclusive” or “shared”) for lock L is given next
(processing completes as soon as one of these actions
is taken). C is considered “in progress” for lock L if
its pre-condition for L has been satisfied but its post-
condition for L has not been processed. During this
time, X’s retained strength for L equals L’s state.

1. If L does not exist, create it, set its state to s, no
queuing.

2. If L’s state is “unlocked”, set its state to s, no
queuing.

3. If L is held for “exclusive” access by X, and
no command holding L is currently in progress, and
either s is “exclusive” or L’s queue is empty, set L’s
state to s, no queuing.

4. If L’s queue is not empty, append C to end of

L’s queue.
5. If L’s state is “shared” and s is “shared”, no

change to L’s state, no queuing.
6. If another command holding this lock is cur-

rently in progress, append C to end of L’s queue.
7. If L is held for “exclusive” access by another

initiator Y, append C to end of L’s queue, send notifi-
cation to Y to “demote” (if s is “shared”) or “release”
(if s is “exclusive”) this block.

8. If L is held for “shared” access, send “release”
notifications to each other initiator Y currently shar-
ing L, set L’s state to “exclusive”, no queuing.

There are two situations when a target sends a no-
tification to another initiator Y during pre-condition
processing, both of which occur when no in-progress
command currently holds L and L’s queue is empty:
when Y has “exclusive” access; or when Y has
“shared” access and s is “exclusive”.

When notified to “release” a “shared” block, an
initiator must flush this block from its buffer cache,
but it sends no reply to the target because the tar-
get changed that initiator’s retained strength to “un-
locked” when sending the notification. When noti-
fied to “demote” or “release” an “exclusive” block,
an initiator must respond with a new command on
this block having a pre-condition of “exclusive” and
an appropriate post-condition, and must also flush a
released block from it’s cache. This command will
jump ahead of commands from any other initiator in
the queue for this lock (see step 3 above). An ini-
tiator asked to “demote” or “release” an “exclusive”
block is given a deadline by which to rely – if this is
deadline is not met, the target considers the initiator
to be dead and forcibly releases all locks held by it.

In SCSI and iSCSI, completion of every command
C requires the target to send a reply to the initiator X,
after which it uses the following decision sequence to
process post-condition p for each lock L held by X
with strength s while C was in progress, and to set
the retained strength r between X and L.

6



1. If s is “exclusive” and the first queued command
D is from X, set r and L’s state to D’s pre-condition,
remove D from queue and continue D;

2. If s is “exclusive” and p is “unchanged”, then:
(a) if L’s queue contains a command D from X
with pre-condition “exclusive”, remove the first such
D from queue and continue D; (b) else if the first
queued command requires “exclusive” access, send
“release” notification to X; (c) else if the first queued
command requires “shared” access, send “demote”
notification to X.

3. If s is “exclusive” and p is “demote”, set r and
L’s state to “shared”, then: (a) if the first queued
command D requires “exclusive” access, send “re-
lease” notification to X, set r to “unlocked”, set L’s
state to “exclusive”, remove D from queue and con-
tinue D; (b) else, while the first queued command D
requires “shared” access, remove D from queue and
continue D.

4. If s is “exclusive” and p is “release”, set r and
L’s state to “unlocked”, then: (a) if the first queued
command D requires “exclusive” access, set L’s state
to “exclusive”, remove D from queue and continue
D; (b) else, while the first queued command D re-
quires “shared” access, set L’s state to “shared”, re-
move D from queue and continue D.

5. If s is “shared” and p is “unchanged”: (a)
if commands holding L are in progress or if L’s
queue is empty, do nothing further; (b) else, if the
first queued command D requires “exclusive” access,
send “release” notification to all initiators holding L,
set L’s state to “exclusive”, remove D from queue and
continue D; (c) else, while the first queued command
D requires “shared” access, remove D from queue
and continue D.

6. If s is “shared” and p is “release”, set r to
“unlocked”, then: (a) if commands holding L are in
progress, do nothing further; (b) else, if L’s queue is
empty and no other initiators hold L, set L’s state to
“unlocked”; (c) else, if the first queued command D

requires “exclusive” access, send “release” notifica-
tion to all other initiators holding L, set L’s state to
“exclusive”, remove D from queue and continue D;
(d) else, while the first queued command D requires
“shared” access, set L’s state to “shared”, remove D
from queue and continue D.

3.5 Performance Considerations

The purpose of having separate block-level pre- and
post-conditions for both data and two types of meta-
data is to increase opportunities for fine-grained par-
allel access by different host initiators, to try to
minimize the situations where contention may arise,
and to enable initiator-side caching without requiring
initiator-to-initiator communication for maintaining
cache consistency. This enables different hosts to
simultaneously read and/or write disjoint sets of
blocks in the same file, and enables one host to cache
data blocks as long as no other host attempts to write
those blocks.

To reduce the time and space required for iSCSI
target processing, block sizes should be large, 32K
or more, and directories are limited to a single block.
It would also be beneficial to define more powerful
POSIX-level commands, for example, a “copy” that
would not require data to cross the network but could
be performed entirely on the iSCSI target.

The advantages of initiator caching must be
weighed against the cost of bookkeeping and cache-
flush notification imposed on both the initiator and
target. Caching can be controlled dynamically by
both initiator and target – the initiator through the
use of appropriate post-conditions, the target through
asynchronous notifications to initiators. Experimen-
tation will be necessary to determine effective strate-
gies, but a simple one would be to limit caching to di-
rectory metadata blocks, since they are used repeat-
edly during path name resolution, while data block
caching is often more speculative.

7



4 Summary and Future Work

Public Internet Disks are a new way of making in-
dependent storage devices directly available to in-
dependent hosts via the Internet without interven-
ing file servers. This paper describes an architec-
ture for PIDs that partitions a traditional file system’s
functionality between the host and the storage de-
vice, and uses extension mechanisms in the iSCSI
protocol to carry additional information along with
traditional SCSI commands. A novel target locking
mechanism based on pre- and post-conditions elimi-
nates the need for host to host communication.

Much work remains to be done to implement this
architecture and to evaluate and tune its performance
under various operating conditions. It would also be
desirable to formally specify the set of file system
operations along with their pre- and post-conditions,
in order to be able to verify its completeness and cor-
rectness, and possibly to generate tools for interop-
erability testing and performance monitoring.

References

[1] T10 Technical Committee of the NCITS.
SAM2, SCSI architecture model – 2. Technical
Report T10 Project 1157-D Revision 24, Na-
tional Committee for Information Technology
Standards, September 2002.

[2] J. Satran et al. Internet small computer systems
interface (iSCSI). Technical Report RFC3720,
Internet Engineering Task Force, April 2004.

[3] Andrew Barry et al. An overview of version
0.9.5 proposed scsi device locks. InProceed-
ings of the 17th IEEE/8th NASA Goddard Con-
ference on Mass Storage Systems and Tech-
nologies, pages 243–251, March 2000.

[4] T10 Technical Committee of the NCITS.
Object-based storage device commands (OSD).
Technical Report T10 Project 1355-D Revision
10, National Committee for Information Tech-
nology Standards, July 2004.

[5] Chandramohan Thekkath et al. Frangipani: A
scalable distributed file system. InProceedings
of the 16th ACM Symposium on Operating Sys-
tems Principles, pages 224–237, October 1997.

[6] Kenneth Preslan et al. Implementing journal-
ing in a linux shared disk file system. InPro-
ceedings of the 17th IEEE/8th NASA Goddard
Conference on Mass Storage Systems and Tech-
nologies, March 2000.

[7] Frank Schmuck and Roger Haskin. GPFS:
a shared-disk file system for large computing
clusters. InProceedings of the Conference on
File and Storage Technologies (FAST’02), Jan-
uary 2002.

[8] Randal Burns. Data Management in a Dis-
tributed File System for Storage Area Net-
works. PhD thesis, University of California,
Santa Cruz, March 2000.

[9] Alain Azagury et al. Towards an object store. In
Proceedings of the 20th IEEE/11th NASA God-
dard Conference on Mass Storage Systems and
Technologies, pages 165–176, April 2003.

[10] Thomas Ruwart. OSD: a tutorial on object
storage devices. InProceedings of the 19th
IEEE/10th NASA Goddard Conference on Mass
Storage Systems and Technologies, pages 21–
34, April 2002.

[11] Hugo Krawczyk et al. HMAC: keyed-hashing
for message authentication. Technical Report
RFC2104, Internet Engineering Task Force,
April 2004.

8


