
DESIGN AND IMPLEMENTATION OF A
LINUX SCSI TARGET FOR STORAGE AREA NETWORKS

ASHISH PALEKAR

Trebia Networks Inc
33 Nagog Park

Acton, Massachusetts 01720, USA
Email: apalekar@trebia.com

NARENDRAN GANAPATHY
ANSHUL CHADDA

ROBERT D. RUSSELL

InterOperability Laboratory
University of New Hampshire

Durham, New Hampshire 03824, USA
Email: fng3,achadda,rdrg@iol.unh.edu

ABSTRACT

This paper describes the architecture of a set of kernel
components for developing and testing storage area net-
work transport protocols under Linux. This software is in-
tended for several uses: as a general prototype for network
transport protocol development; as a reference implement-
ation of the iSCSI protocol currently under development
for standardization by IETF; as a basis for conformance
testing for iSCSI; and as a testbed for development of in-
teroperability test suites for iSCSI.
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1 INTRODUCTION

The widespread adoption of the World Wide Web and
e-commerce has created a huge demand for vast storage
repositories that provide real-time on-line access 24 hours
a day, 7 days a week, 52 weeks a year. This demand
has overwhelmed traditional storage mechanisms, and has
prompted the development of promising new technologies,
one of which is the “Storage Area Network” or SAN [1].

The key idea behind SAN development is to replace the
traditional data bus between a host computer and its stor-
age devices with a high-speed data network. In a SAN,
the storage device is directly attached to that network, and
interacts with multiple host computers using standard net-
work protocols, rather than specialized bus protocols. This
leverages the substantial installed network base already in
place, and opens up the prospect of geographically dis-
perse, enterprise-wide storage. With the advent of gigabit-
per-second and higher network transfer rates, the effec-
tive transfer rates between hosts and storage increase while
costs are decreased. To enable this paradigm, the approach
that is being taken is to design new protocols that encap-
sulate SCSI commands and data for transport over the net-
work. These are collectively referred to as “SCSI Transport
Protocols”.

The first technology to utilize this idea was Fibre Chan-
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nel [2], which uses a gigabit-per-second link to carry SCSI
commands and data over distances up to 10 KM. This tech-
nology requires special hardware adapters on both the host
computers and the target storage devices, and installation
of new fiber-optic cabling.

To avoid the special hardware requirements of Fibre
Channel, several recent proposals have been made to lever-
age the huge existing network infrastructure, which is
largely built on Ethernet at the host computers and which
forms the basis for the global Internet.

The new storage transport protocols of interest to us are
those that utilize the existing TCP/IP protocol stack. The
two main proposals in this category are the SCSI Encapsu-
lation Protocol (SEP) [3] and the iSCSI Protocol [4], which
is currently under development as a Standard by the Inter-
net Engineering Task Force (IETF) [5]. Our initial effort
was concentrated on SEP because it is relatively simple
compared to iSCSI, and also its specification was more sta-
ble. This first effort allowed us to design an architecture
and test it quickly. Using this experience as a basis, we
then generalized the architecture to encompass both pro-
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tocols, as well as allowing for any future protocol propos-
als. We then utilized this new architecture to implement
a prototype system of both SEP and draft 6 of the iSCSI
proposal, and that is the work which is reported on in this
paper. Complete details are available in the thesis [6].

2 DESIGN

The design of our kernel-level SCSI Target Emulator was
based on two general guidelines: (1) be as general as possi-
ble, so that different SCSI transport protocols could be in-
corporated and could coexist simultaneously; (2) utilize as
much as possible of the existing Linux kernel mechanisms.

Since the purpose of any SCSI transport protocol is to
interface with the SCSI subsystem, our architecture was
heavily influenced by the general organization of SCSI
subsystems as defined by the SCSI Architectural Model
(SAM-2) [7] and its corresponding Initiator-side architec-
ture in the Linux kernel [8].

Figure 1 shows the three-layered architecture of the
Linux Initiator SCSI Subsystem. The upper-level layer
provides a generic “read/write” interface that is tradition-
ally used by a file system. The mid-level converts the

reads and writes into SCSI command and data transfer se-
quences. The lower-level consists of the drivers for the
Host Bus Adapters (HBAs) of the specific SCSI devices.
These HBAs control the delivery of the SCSI commands
and data over the SCSI bus to a particular SCSI device. It
is therefore natural for our kernel-level Front-End Initiator
Driver (FEID) to be designed as a special HBA that encap-
sulates the SCSI commands and data into the appropriate
transport protocol and then delivers them over a network
rather than over a SCSI bus. This is also the way Fibre
Channel Initiator interfaces are built.

Traditionally a SCSI Target is a device, such as a disk
drive or tape drive, so that its internal organization does
not necessarily follow any particular software architecture.
Also, “traditional” SCSI Targets are not designed to work
over multiple SCSI transport protocols. Therefore, in ac-
cordance with our first design guideline, an important ob-
jective of our architecture was to keep information specific
to a particular SCSI transport protocol separate from infor-
mation that SCSI needs to process a command.

The general architecture of our SCSI Target Emulator
software and its relationship with the architecture of the
Initiator is shown in Figure 2. The Target Emulator con-



registertargettemplate(struct ScsiTargetTemplate *)
deregistertargettemplate(struct ScsiTargetTemplate *)

registertargetfront end(struct ScsiTargetTemplate *)
deregistertargetfront end(struct ScsiTargetDevice *)
rx cmnd(struct ScsiTargetDevice *, u64, char *, int)

scsi rx data(struct TargetScsiCmnd *)
scsi targetdone(struct TargetScsiCmnd *)

scsi release(struct TargetScsiCmnd *)
rx taskmgmt fn(struct ScsiTargetDevice *, int, void *)

Table 1: Set of API functions by which an FETD calls the
STML

struct ScsiTargetTemplate
f

int (*detect)(struct ScsiTargetTemplate *);
int (*release)(struct ScsiTargetDevice *);
int (*xmit response)(struct TargetScsiCmnd *);
int (*rdy to xfer)(struct TargetScsiCmnd *);
int (*task mgmt fn done)(struct ScsiTargetMessage *);

void (*report aen)(int, u64);
g;

Table 2: Template of API functions by which the STML
“calls back” an FETD

sists of two components: a generic SCSI Target Mid-level
(STML) and a Front-End Target Driver (FETD). There is
one FETD for each SCSI transport protocol (i.e., SEP and
iSCSI), and all details of this transport protocol on the Tar-
get are handled completely within this component.

The STML is therefore totally independent of the SCSI
transport protocol used in the FETD. Its role is to process
SCSI commands and data received from a FETD “on be-
half of the Initiator”. This means processing the received
SCSI commands and data, and handing off the generated
responses and data back to the FETD for delivery back to
the Initiator. The STML is also responsible for SCSI error
handling, and for maintaining SCSI state information.

To accomplish its tasks, our kernel-level version of the
STML is designed to utilize the existing local SCSI subsys-
tem on the Target platform, in accordance with our second
design guideline. The STML is organized as two threads:
the SCSI Target Thread (STT), which is the main vehicle
for processing SCSI commands, and the SCSI Signal Pro-
cessing Thread (SSPT), which is used to deal with the asyn-
chronous arrival of SIGIO signals, as explained in the next
section.

An important part of the design of the Target Emulator
was specification of an “API” between the STML and the
FETD. This API consists of a set of data structures and two
sets of functions – one for use by the FETD to hand off

struct ScsiTargetMessage
f

struct ScsiTargetMessage *next;
struct ScsiTargetMessage *prev;

int message;
struct ScsiTargetDevice device;
void *value;
g;

struct TargetScsiCmnd
f

int state;
int id;

u64 devid;
struct ScsiTargetTemplate *devtemplate;

u64 targetid;
u64 lun;

uchar cmd[MAXCOMMAND SIZE];
int len;

struct TargetScsiCmnd *next;
struct ScsiRequest *req;

g;

struct ScsiTargetDevice
f

u64 id;
struct ScsiTargetDevice *next;
struct ScsiTargetTemplate *template;

g;

Table 3: Additional API data structures

incoming SCSI commands and data to the STML, and the
other for use by the STML to hand back the generated SCSI
responses and data to the FETD.

Table 1 lists the nine API functions available for use by
an FETD in order to pass SCSI commands and data to
the STML. The six API functions required by the STML
in order to “call back” the FETD are provided in the
Scsi Target Template structure shown in Table 2. There
are three other data structures used by these functions, as
summarized in Table 3.

A quick explanation of how the FETD’s interact with the
STML using the API functions follows.

When an FETD module is dynamically loaded into
the Linux kernel using theinsmod command, the FETD
calls register target template() to register itself with
the STML. (Later, when this module is removed, the
FETD must callderegister target template().) The pa-
rameter to both these functions is the “jump table” of
“call back” functions shown in theScsi Target Template
structure (Table 2). As part of processing theregis-
ter target template() function, the STML will call back
the FETD’s detect() function in order to detect all “de-
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FIGURE 3: Processing a READ-type command on the Target Emulator

vices” being handled by this FETD. The FETD’sdetect()
function in turn registers each device with the STML by
calling register target front end().

Once registered, an FETD operates asynchronously with
respect to the STT. An FETD device interrupt handler calls
the STML’s rx cmnd() function whenever it receives a
new SCSI command from the network. This command
will be enqueued for processing by the STT thread. If the
command is a READ-type command, where data is being
sent from the Target to the Initiator, the STT thread allo-
cates buffers and passes the request to the SCSI mid-level
subsystem on the Target using the SCSI generic interface.
When this subsystem informs the STT that the data is in the
buffers, the STT calls back thexmit response() function of
the FETD, which is responsible for encapsulating the data
and asynchronously sending it over the transport network
to the Initiator. Once this transmission is complete, the
FETD notifies the STT by calling thescsi target done()
function of the STML. This sequence of events is illustrated
schematically in Figure 3.

Processing a WRITE-type command is somewhat more
complicated, because the data from the Initiator will asyn-
chronously follow the SCSI command itself. The neces-
sary sequence of events is illustrated in Figure 4. As in
the case of a READ-type command, the STT thread pro-
cesses a WRITE by first allocating buffers, but it obviously
cannot fill these buffers locally as was done for a READ.
Instead, it passes these buffers back to the FETD by calling
therdy to xfer() function. This function uses flow control
mechanisms unique to the particular SCSI transport pro-
tocol to initiate the transfer of data from the Initiator over
the transport network. When this data arrives, the FETD
passes it to the STML by calling thescsi rx data() func-
tion, which in turn will pass this data to the SCSI mid-
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level subsystem on the Target using the SCSI generic inter-
face. When this subsystem informs the STT that the data
transfer to the local SCSI device has been completed, the
STT calls back thexmit response() function of the FETD,
which must send the SCSI status response back to the Ini-
tiator. Once this transmission is complete, the FETD noti-
fies the STT by calling thescsi target done() function of
the STML.

3 IMPLEMENTATION

All our coding was done in C for the Linux 2.4 kernel. It
is freely available from the UNH IOL iSCSI Consortium at
http://www.iol.unh.edu/consortiums/iscsi/ under the terms
of the GNU Copyleft agreement.

We have implemented two Initiator-side drivers, and
have tested three drivers for storage transport protocols.
The drivers we implemented, for SEP and iSCSI draft 6,
utilize the existing Linux software TCP/IP stack to commu-
nicate over an Alteon ACENIC 1000 BaseT Ethernet card.
The existing driver was for the Fibre Channel protocol, and
utilizes a QLogic Fibre Channel HBA communicating over
a Gigabit Fibre Channel link.

On the Target side we have two implementations of the
Target Emulator: one that operates entirely in user space,
called the User Space Target Emulator (USTE), and one
that operates entirely in kernel space, called the Kernel
Space Target Emulator (KSTE). Both are organized into
the two-part structure described in the previous section:
a protocol-dependent FETD, and a protocol-independent
STML. For the USTE the only FETD we have implemented
is for SEP, and that software is not discussed further in
this paper. We put most of our development effort into the
KSTE so that we would have a software reference imple-
mentation with reasonable performance.
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For the KSTE we have implemented three FETDs – one
for SEP, one for iSCSI draft 6, and one for Fibre Channel.
It is the KSTE that is discussed in the rest of this paper.

Because the Linux kernel SCSI subsystem is organized
into three layers, as already shown in Figure 1, there are
three points at which our STML could interact with this
subsystem, as shown in Figure 5. The first option would be
to use thequeuecommand() interface provided by every
SCSI HBA. This option would have the lowest overhead of
the three options, but would require that the STML essen-
tially duplicate most of the functionality already provided
by the SCSI mid-level of the local SCSI subsystem. This
clearly violates our second design guideline and was re-
jected.

The second option would be to use thescsi do req() in-
terface provided by the SCSI mid-level. This is the inter-
face utilized by all SCSI upper-level components, and is
the preferred interface on Linux systems. However, it is not
yet well-documented. As a result, we have implemented a
version using this option but it is not yet fully debugged.
Thus we currently utilize the third option, the SCSI generic
upper-level, via its new version 3 interface [9]. Besides a
slightly higher overhead than option two, this option also
introduces an additional complication because, when used
for asynchronous processing, the Linux SCSI generic inter-
face sends a SIGIO signal when it completes command pro-
cessing. The STT cannot receive signals when utilizing cer-
tain sections of the SCSI generic code. Therefore, to han-
dle this signal required the introduction of a second kernel



thread, called the SCSI Signal Processing Thread (SSPT).
This thread simply catches the SIGIO and enqueues a com-
mand for the STT, thereby avoiding re-entrancy problems
in the STT. A detailed picture of how these threads interact
with each other and the FETDs via the APIs is shown in
Figure 6.

The iSCSI FETDs are implemented as two kernel
threads per session, one for receiving data from the Ini-
tiator and one to send data to the Initiator. At the present
time an FETD is limited to only one TCP connection per
iSCSI session, but future plans call for allowing multiple
TCP connections per iSCSI session, in accordance with
the Standard. When this is done, there will be two ker-
nel threads per connection. This will permit a great deal
of simultaneous I/O activity within a single iSCSI session,
since different connections can go over different networks
between the same Initiator and Target.

4 CONFIGURATION

Although the SEP protocol is a simple encapsulation
protocol, iSCSI is not – it involves a rather complex lo-
gin procedure which requires negotiation of security and
operational parameters between Initiator and Target. These
negotiations permit a dynamic choice between several se-
curity schemes, as well as a choice of optional digests to
protect iSCSI headers and/or data. Furthermore, a single
session can involve multiple TCP connections between the
same Initiator and Target, with implications for flow con-
trol and organizational complexity on both sides. iSCSI
sessions are expected to last for a very long time, in many
cases for the entire time the kernel is running. It is there-
fore not possible to freeze the configuration of these param-
eters either at the time the software is compiled or when the
modules are loaded.

It is clearly important to be able to dynamically manage
this software in a convenient manner. To do this we have
designed it from the beginning to utilize the Linux “/proc”
interface as the means of communication of management
information between the kernel components and the sys-
tem administrator. The /proc interface is a natural means
for displaying information about the internal state of a ker-
nel component, but it has also become an increasingly im-
portant tool in Linux that allows a system administrator to
have direct input into a running kernel.

This design conforms to both our guidelines: the /proc
interface is very general, and can be used by any HBA or
FETD; and the mechanism is already part of Linux, so we
do not have to invent another way to do this.

There is a separate interface for Initiators and for Targets.
On the Initiator side, when the iSCSI Initiator is loaded it
creates a “/proc/scsi/iscsiinitiator” directory that contains
one file for each of the sessions that this initiator is capable
of handling. (Loading the SEP Initiator creates a similar di-
rectory called “/proc/scsi/sepinitiator”.) A user-space tool,

modeled on the “ifconfig” software for network configura-
tion, utilizes these files to bring the indicated session ”up”
or ”down”, and to configure it with the target IP address, the
target TCP port number, and any other desired information,
such as the login negotiation parameters (see below).

On the Target side, there is a file called
“/proc/scsitarget/scsitarget” which lists the targets
being emulated on that platform. When the iSCSI
Target module is loaded it creates a directory called
“/proc/scsitarget/iscsitarget”. This directory contains
one file for each of the sessions that this target is capable
of handling, plus a file called “iscsiconfig” that contains
the parameters to be used when accepting a new session
from an Initiator. During the login process with that
Initiator these parameters are subject to negotiation, so
the individual file for that session contains the applicable
values for the session. Writing to the “iscsiconfig” file
will change the values used when creating the next session;
writing to the individual file for a particular session will
change the values currently in use by that existing session.

In iSCSI, a big part of the input to both the Initiator
HBA and the Target FETD is the setting of parameter val-
ues needed for negotiation during the login process. These
settings are incorporated into the iSCSI protocol as UTF-
8 text having the form: “key=value” where “value” can
be either a single numeric value, a single UTF-8 character
string, or a list of UTF-8 character strings. Our /proc inter-
face permits input of text having these same forms, but with
added information that indicates how and when these keys
are to be utilized for both negotiation and operation. Addi-
tional configuration information includes management pa-
rameters outside the context of the iSCSI protocol, such as
the IP addresses and TCP port numbers to use for both Ini-
tiators and Targets, etc.

5 CONCLUSION

In this paper we have described the architecture of our
software for developing and testing storage area network
transport protocols. This software is designed to run in
the Linux 2.4 kernel and to take advantage of the facili-
ties offered by the Linux kernel – in particular, the existing
TCP/IP network stack, the existing SCSI subsystem, the
/proc interface and the loadable module facility.

Our software for the Linux kernel, which is freely avail-
able in source form, is beginning to be used for a number of
purposes: as the basis for general prototyping for network
transport protocols, as a means of “proofing” the iSCSI pro-
tocol as it undergoes the IETF standardization process, as
a basis for developing tests that check conformance to that
standard, and as a basis for developing interoperability tests
for Initiators and Targets that utilize iSCSI. While the soft-
ware contains many “hooks” to facilitate its use in the test-
ing environment, it also defines a “reference implementa-
tion” of iSCSI that can be used by small installations where



simply having access to iSCSI without the need for any spe-
cial hardware is more important than the high performance
that is expected to obtained when hardware specifically de-
signed to utilize iSCSI becomes available on the market.
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