
A Performance Study to Guide RDMA Programming Decisions

Patrick MacArthur, Robert D. Russell
Computer Science Department
University of New Hampshire

Durham, New Hampshire 03824-3591, USA
pio3@unh.edu, rdr@unh.edu

Abstract—This paper describes a performance study of
Remote Direct Memory Access (RDMA) programming tech-
niques. Its goal is to use these results as a guide for making
“best practice” RDMA programming decisions.

Infiniband RDMA is widely used in scientific high per-
formance computing (HPC) clusters as a low-latency, high-
bandwidth, reliable interconnect accessed via MPI. Recently
it is gaining adherents outside scientific HPC as high-speed
clusters appear in other application areas for which MPI is
not suitable. RDMA enables user applications to move data
directly between virtual memory on different nodes without
operating system intervention, so there is a need to know how
to incorporate RDMA access into high-level programs. But
RDMA offers more options to a programmer than traditional
sockets programming, and it is not always obvious what the
performance tradeoffs of these options might be. This study is
intended to provide some answers.

Keywords-RDMA; Infiniband; OFA; OFED; HPC;

I. INTRODUCTION

As networks grow faster, Remote Direct Memory Access
(RDMA) is rapidly gaining popularity outside its traditional
application area of scientific HPC. RDMA allows application
programmers to directly transfer data between user-space
virtual memories on different machines without kernel in-
tervention, thereby bypassing extra copying and processing
that reduce performance in conventional networking tech-
nologies. RDMA is completely message-oriented, so all
application messages are sent and received as units, unlike
TCP/IP, which treats network communication as a stream of
bytes.

User-level RDMA programming offers many more op-
tions and is more complex than traditional socket program-
ming, as it requires the programmer to directly manipulate
functions and data structures defined by the network inter-
face in order to directly control all aspects of RDMA mes-
sage transmission. Therefore, the programmer must make
many decisions which may drastically affect performance.
The goal of this paper is to evaluate the performance of
numerous methods of directly using the application-level
RDMA features in practice.

Similar performance evaluations have been done for spe-
cific applications and tools that use RDMA, such as MPI [1],
[2], FTP [3], GridFTP [4], NFS [5], AMPQ [6], PVFS [7],
etc. The importance of our work is that we evaluate RDMA

directly, without any particular application or environment
in mind, and provide guidance on general design options
faced by anyone directly using RDMA.

A. Background

Three RDMA technologies are in use today: Infiniband
(IB), Internet Wide-Area RDMA Protocol (iWARP), and
RDMA over Converged Ethernet (RoCE). Infiniband [8], [9]
defines a completely self-contained protocol stack, utilizing
its own interface adapters, switches, and cables. iWARP
defines three thin protocol layers [10]–[12] on top of the
existing TCP/IP protocol (i.e., standard Internet). RoCE [13]
simply replaces the physical and data-link layers of the In-
finiband protocol stack with Ethernet. All three technologies
are packaged as self-contained interface adapters and drivers,
and there are software-only versions for both iWARP [14]
and RoCE [15].

The OpenFabrics Alliance (OFA) [16] publishes and
maintains a common user-level Application Programming
Interface (API) for all three RDMA technologies, It provides
direct, efficient user-level access to all features supported by
each RDMA technology. OFA also provides open access to a
reference implementation of this API, along with useful util-
ities, called the OpenFabrics Enterprise Distribution (OFED)
[17]. This API is used throughout this study.

In RDMA, actions are specified by verbs which con-
vey requests to the network adapter. Each verb, such as
post_send, is represented in the OFED API as a library
function, ibv_post_send, with associated parameters
and data structures. To initiate a transfer, ibv_post_send
places a work request data structure describing the trans-
fer onto a network adapter queue. Data transfers are all
asynchronous: once a work request has been posted, control
returns to the user-space application which must later use
the ibv_poll_cq function to remove a work completion
data structure from a network adapter’s completion queue.
This completion contains the status for the finished transfer
and tells the application it can again safely access the virtual
memory used in the transfer.

RDMA provides four sets of work request opcodes to
describe a data transfer. The SEND/RECV set superficially
resembles a normal socket transfer. A receiver first posts
a RECV work request that describes a virtual memory

2012 IEEE 14th International Conference on High Performance Computing and Communications

978-0-7695-4749-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HPCC.2012.110

778

area into which the adapter should place a single message.
The sender then posts a SEND work request describing a
virtual memory area containing the message to be sent. The
network adapters transfer data directly from the sender’s
virtual memory area to the receiver’s virtual memory area
without any intermediate copies. Since both sides of the
transfer are required to post work requests, this is called
a “two-sided” transfer.

The second set is a “one-sided” transfer in which a sender
posts a RDMA WRITE request that “pushes” a message
directly into a virtual memory area that the receiving side
previously described to the sender. The receiving side’s CPU
is completely “passive” during the transfer, which is why this
is called “one-sided.”

The third set is also a “one-sided” transfer in which
the receiver posts a RDMA READ request that “pulls” a
message directly from the sending side’s virtual memory,
and the sending side’s CPU is completely passive.

Because the passive side in a “one-sided” transfer does
not know when that transfer completes, there is another
“two-sided” opcode set in which the sender posts a
RDMA WRITE WITH IMM request to “push” a message
directly into the receiving side’s virtual memory, as for
RDMA WRITE, but the send work request also includes
4 bytes of immediate (out-of-band) data that is delivered
to the receiver on completion of the transfer. The receiving
side posts a RECV work request to catch these 4 bytes, and
the work completion for the RECV indicates the status and
amount of data transferred in the message.

B. Features Evaluated

1) Work Request Opcode Set: Several RDMA features
were evaluated for this study. The most obvious feature
evaluated was the work request opcode set being used
for the transfer, although in practice this choice is often
limited by the requirements of the application regardless of
performance.

2) Message Size: The second item considered is the
message size, which was arbitrarily categorized into small
messages containing 512 bytes or less and large messages
containing more. This size was chosen since 512 bytes is a
standard disk sector; it is not part of any RDMA standard.

3) Inline Data: The API provides an optional “inline”
feature that allows an interface adapter to copy the data from
small messages into its own memory as part of a posted work
request. This immediately frees the buffer for application
reuse, and makes the transfer more efficient since the adapter
has the data ready to send and does not need to retrieve it
over the memory bus during the transfer.

4) Completion Detection: An asynchronous RDMA
transfer starts when an application posts a work request
to the interface adapter, and completes when the interface
adapter enqueues a work completion in its completion queue.

There are two strategies which an application can employ
to determine when to pick up a work completion.

The first completion detection strategy, called “busy
polling”, is to repeatedly poll the completion queue until a
completion becomes available. It allows immediate reaction
to completions at the cost of very high CPU utilization, but
requires no operating system intervention.

The second strategy, called “event notification”, is to
set up a completion channel that allows an application to
wait until the interface adapter signals a notification on this
channel, at which time the application obtains the work
completion by polling. It requires the application to wait
for the notification by transferring to the operating system,
but reduces CPU utilization significantly.

5) Simultaneous Operations (Multiple Buffers): We set
up the use of simultaneous operations per connection by
posting multiple buffers in a round-robin fashion so that the
interface adapter queues them.

6) Work Request Submission Lists: The functions that
post work requests take a linked list of work requests as
an argument. We compare the performance of creating a list
of work requests and submitting them in a single posting
(“multiple work requests per post”) with that of posting
individual work requests as single element lists (“single
work request per post”).

7) Completion Signaling: For all transfer opcodes except
RECV, a work completion is generated only if a “signaled”
flag is set in the work request. If this flag is not set, the
“unsignaled” work request still consumes completion queue
resources but does not generate a work completion data
structure or notification event. To avoid depleting comple-
tion queue resources, applications must periodically post a
signaled work request and process the generated completion.

We compare sequences containing only signaled work
requests (“full signaling”) against sequences containing both
signaled and unsignaled work requests (“periodic signal-
ing”). SEND or RDMA WRITE WITH IMM with inline
are good examples of where unsignaled work requests could
be used because the data area is no longer needed by the
adapter once the request is posted, allowing the application
to reuse it without first receiving a work completion.

8) Infiniband Wire Speed: Infiniband hardware supports
several different wire transmission speeds, and we compare
the effect of these speeds on various performance measures.

9) RoCE: We compare the performance of RoCE to
Infiniband.

II. TEST PROCEDURES

Our tests are variations of two simple applications, ping
and blast. In the ping tool, a client sends data to a
server and the server sends it back. Ping has variations
for SEND/RECV and RDMA WRITE WITH IMM/RECV,
but not for RDMA READ or RDMA WRITE because with
these opcodes a server cannot determine when a transfer

779

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024

P
er

ce
nt

Message size (bytes)

RDMA_WRITE_WITH_IMM with INLINE
SEND/RECV with INLINE

RDMA_WRITE_WITH_IMM
SEND/RECV

(a) CPU usage (event notification only).

 0

 2

 4

 6

 8

 10

 12

 14

 1 4 16 64 256 1024

M
ic

ro
se

co
nd

s

Message size (bytes)

SEND/RECV notify
RDMA_WRITE_WITH_IMM notify

SEND/RECV with INLINE notify
RDMA_WRITE_WITH_IMM with INLINE notify

SEND/RECV busy
RDMA_WRITE_WITH_IMM busy

SEND/RECV with INLINE busy
RDMA_WRITE_WITH_IMM with INLINE busy

(b) Average one-way time.

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024

M
eg

ab
its

 p
er

 s
ec

on
d

Message size (bytes)

RDMA_WRITE_WITH_IMM with INLINE busy
SEND/RECV with INLINE busy

RDMA_WRITE_WITH_IMM busy
SEND/RECV busy

RDMA_WRITE_WITH_IMM with INLINE notify
SEND/RECV with INLINE notify

RDMA_WRITE_WITH_IMM notify
SEND/RECV notify

(c) Average throughput.

Figure 1. Ping with each completion detection strategy for small messages.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128 256 512

M
ic

ro
se

co
nd

s

Message size (bytes)

RDMA_READ notify
SEND/RECV notify

RDMA_WRITE notify
RDMA_WRITE_WITH_IMM notify
RDMA_WRITE_WITH_IMM busy

SEND/RECV busy
RDMA_WRITE busy
RDMA_READ busy

(a) Average one-way time.

 0.1

 1

 10

 100

 1000

 8000
 16000
 32000
 64000

 1 2 4 8 16 32 64 128 256 512

M
eg

ab
its

 p
er

 s
ec

on
d

Message size (bytes)

RDMA_READ busy
RDMA_WRITE_WITH_IMM busy

RDMA_WRITE busy
SEND/RECV busy
SEND/RECV notify

RDMA_WRITE_WITH_IMM notify
RDMA_WRITE notify
RDMA_READ notify

(b) Average throughput.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 4 16 64 256 1024

M
ic

ro
se

co
nd

s

Message size (bytes)

RDMA_WRITE_WITH_IMM busy
RDMA_WRITE busy

RDMA_WRITE_WITH_IMM and INLINE busy
RDMA_WRITE with INLINE busy

(c) Average one-way time with and without inline,
busy polling only.

Figure 2. Blast with each opcode set and completion detection strategy for small messages using one buffer.

has completed. In the blast tool, which can run with each
of the 4 opcode sets, a client sends data to a server as fast
as possible, but the server does not acknowledge it.

Tests are run between two identical nodes, each consisting
of twin 6-core Intel Westmere-EP 2.93GHz processors with
6 GB of RAM and PCIe-2.0x8 running OFED 1.5.4 on
Scientific Linux 6.1. Each node has a dual-port Mellanox
MT26428 adapter with 256 byte cache line, one port con-
figured for Infiniband 4xQDR ConnectX VPI with 4096-byte
MTUs, the other for 10 Gbps Ethernet with 9000-byte jumbo
frames. With these configurations, each Infiniband or RoCE
frame can carry up to 4096 bytes of user data. Nodes are
connected back-to-back on both ports, and all transfers use
Reliable Connection (RC) transport mode, which fragments
and reassembles large user messages.

We measure 3 performance metrics, all based on elapsed
time, which is measured from just before the first message
transfer is posted to just after the last transfer completes.
Average throughput is the number of messages times the
size of each message divided by elapsed time. Average one-
way time per message for blast is the elapsed time divided
by the number of messages; for ping it is half this value.

Average CPU utilization is the sum of user and system CPU
time reported by the POSIX getrusage function divided
by elapsed time.

III. PERFORMANCE RESULTS

A. Ping example, small messages

Ping is the application generally used to measure round
trip time. It repeatedly sends a fixed-size message back
and forth between client and server. In our tests, message
size varies by powers of 2 from 1 to 1024 bytes. Fig-
ure 1 shows a total of 8 combinations of SEND/RECV
and RDMA WRITE WITH IMM/RECV, with and without
inline, and with busy polling and event notification.

Figure 1a shows slight differences between the CPU
usage by opcode sets, with inline requiring more cycles
for messages less than 32 bytes due to the extra data copy
involved. Only event notification cases are graphed, as busy
polling always has 100% CPU usage. Figure 1b shows
clearly that busy polling produces lower one-way times than
event notification, and transfers with inline perform better
than those without it (6.2 microseconds for messages smaller
than the 256 byte cache line). Figure 1c shows that for each

780

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64

M
ic

ro
se

co
nd

s

Buffer count

912-byte messages
256-byte messages
64-byte messages
16-byte messages

4-byte messages
1-byte messages

(a) Average one-way time with sin-
gle work request per posting.

 1

 10

 100

 1000

 10000
 20000
 30000

 1 2 4 8 16 32 64

M
eg

ab
its

 p
er

 s
ec

on
d

Buffer count

912-byte messages
256-byte messages
64-byte messages
16-byte messages

4-byte messages
1-byte messages

(b) Average throughput with single
work request per posting.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8 16 32 64

M
ic

ro
se

co
nd

s

Buffer count

912-byte messages
256-byte messages
64-byte messages
16-byte messages

4-byte messages
1-byte messages

(c) Average one-way time with mul-
tiple work requests per posting.

 0.1

 1

 10

 100

 1000

 8000
 16000
 32000
 64000

 1 2 4 8 16 32 64

M
eg

ab
its

 p
er

 s
ec

on
d

Buffer count

912-byte messages
256-byte messages
64-byte messages
16-byte messages

4-byte messages
1-byte messages

(d) Average throughput with multi-
ple work requests per posting.

Figure 3. Blast with RDMA WRITE with busy polling for small messages with inline using multiple buffers.

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 128

P
er

ce
nt

Buffer count

1KiB message
8KiB message

32KiB message
64KiB message

(a) Active side CPU usage (event notification only).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16 32 64 128

M
ic

ro
se

co
nd

s

Buffer count

64KiB message, notify
64KiB message, busy
32KiB message, notify
32KiB message, busy
8KiB message, notify
8KiB message, busy
1KiB message, notify
1KiB message, busy

(b) Average one-way time.

 0.1

 1

 10

 100

 1000

 8000
 16000
 32000
 64000

 1 2 4 8 16 32 64 128

M
eg

ab
its

 p
er

 s
ec

on
d

Buffer count

64KiB message, busy
64KiB message, notify

8KiB message, busy
8KiB message, notify
1KiB message, busy

1KiB message, notify

(c) Average throughput.

Figure 4. Blast with RDMA WRITE for each completion detection strategy for large messages using multiple buffers and multiple work requests per
posting.

opcode set throughput increases proportionally with message
size and is slightly better for busy polling at any given size.
There is little difference in throughput between opcode sets,
with low total throughput for them all, since small messages
cannot maximize throughput. Using either SEND/RECV or
RDMA WRITE WITH IMM/RECV with inline and busy
polling gives the best one-way time and marginally better
throughput for small messages, but suffers from 100% CPU
utilization.

B. Blast example, small messages, single buffer

Next is a blast study using small messages. It compares
all transfer opcode sets for both busy polling and event
notification. As with ping, busy polling cases have lower
one-way time and higher throughput, as shown in Figure 2a
and Figure 2b respectively. CPU usage for event notification
cases is not significantly different between the opcode sets.
As expected, RDMA READ with event notification performs
poorly. However, RDMA READ with busy polling gives
slightly better performance than other opcodes, which is odd,
as RDMA READ is expected to perform worse because data
must flow from the responder back to the requester, which
requires a full round-trip in order to deliver the first bit.

Figure 2c examines the use of inline in WRITE operations
for small message blast. This is only done for busy polling

as it performs much better than event notification for small
messages. Figure 2c shows that one-way time is lowest for
both opcodes when using inline and messages smaller than
the 256 byte cache line, although our adapters accepted up
to 912 bytes of inline data.

C. Blast example, small messages, multiple buffers

Next consider the use of multiple outstanding buffers.
We initially post an RDMA WRITE for every buffer, then
repost each buffer as soon as we get the completion of its
previous transfer. This way, the interface adapter processes
posted work queue entries in parallel with the application
code processing completions.

In Figure 3a, we vary the buffer count for several message
sizes using RDMA WRITE with inline and busy polling.
One-way time for messages less than or equal to 64 bytes is
only about 300 nanoseconds when using 8 or 16 buffers, and
is less than 1 microsecond when using 2 or 4 buffers. For
larger buffer counts, one-way time for messages smaller than
64 bytes increases, but remains around 300 nanoseconds
for 64 byte messages. Throughput, shown in Figure 3b,
increases proportionally with message size, except that
throughput of 64 byte messages slightly exceeds that of 256
byte messages for 8 or more buffers, while throughput for
smaller messages drops noticeably for 32 or 64 buffers.

781

 0

 20

 40

 60

 80

 100

1KiB 8KiB 64KiB 512KiB 4MiB 32MiB 256MiB

P
er

ce
nt

Message size (bytes)

SEND/RECV
RDMA_WRITE

RDMA_WRITE_WITH_IMM
RDMA_READ

(a) Active side CPU usage (event
notification only).

 0

 20

 40

 60

 80

 100

1KiB 8KiB 64KiB 512KiB 4MiB 32MiB 256MiB

P
er

ce
nt

Message size (bytes)

SEND/RECV
RDMA_WRITE

RDMA_WRITE_WITH_IMM
RDMA_READ

(b) Passive side CPU usage (event
notification only).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1KiB 8KiB 64KiB 512KiB 4MiB 32MiB 256MiB

M
ic

ro
se

co
nd

s

Message size

RDMA_READ, notify
SEND/RECV, notify

RDMA_WRITE_WITH_IMM, notify
RDMA_WRITE, notify

RDMA_READ, busy
SEND/RECV, busy

RDMA_WRITE_WITH_IMM, busy
RDMA_WRITE, busy

(c) Average one-way time.

 0.1

 1

 10

 100

 1000

 8000
 16000
 32000
 64000

1KiB 8KiB 64KiB 512KiB 4MiB 32MiB 256MiB

M
eg

ab
its

 p
er

 s
ec

on
d

Message size

RDMA_WRITE, busy
RDMA_WRITE_WITH_IMM, busy

SEND/RECV, busy
RDMA_READ, busy
SEND/RECV, notify

RDMA_WRITE, notify
RDMA_WRITE_WITH_IMM, notify

RDMA_READ, notify

(d) Average throughput.

Figure 5. Blast with each opcode set and each completion detection strategy for large messages using four buffers with multiple work requests per posting.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8 16 32 64 128 256

M
ic

ro
se

co
nd

s

Buffer count

multiple WR per post, periodic signaling
multiple WR per post, full signaling

single WR per post, periodic signaling
single WR per post, full signaling

(a) Average one-way time for blast with
RDMA WRITE and busy polling for 16 byte
messages, with each work request submission
strategy using multiple buffers with multiple
work requests per posting.

 0.1

 1

 10

 100

 1000

 8000
 16000
 32000
 64000

 1 2 4 8 16 32 64 128 256

M
eg

ab
its

 p
er

 s
ec

on
d

Buffer count

single WR per post, full signaling
single WR per post, periodic signaling

multiple WR per post, full signaling
multiple WR per post, periodic signaling

(b) Average throughput for blast with
RDMA WRITE and busy polling for 16 byte
messages, with each work request submission
strategy using multiple buffers with multiple
work requests per posting.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128 256 512

M
ic

ro
se

co
nd

s

Message size (bytes)

signaled READ/signaled WRITE notify
unsignaled READ/signaled WRITE notify

signaled READ/signaled WRITE busy
unsignaled READ/signaled WRITE busy

(c) Average one-way time for ping with client
issuing RDMA WRITE and RDMA READ,
with each completion detection strategy for
small messages.

Figure 6. Comparing completion signaling strategies.

D. Blast example, small messages, multiple buffers, multiple
work requests per posting

The next study is identical to the previous, except instead
of posting each work request as we process its previous
completion, we place it into a list and post that list after
processing all available completions. Comparing one-way
times in Figure 3c with those in Figure 3a shows that times
for 256 and 912 byte messages are unchanged, but for 64
byte and smaller messages they increase when using more
than 2 buffers, and for more than 16 buffers they increase to
that of 256-byte messages. For messages of 64 bytes or less
with 4, 8 or 16 buffers Figure 3d does not show the increase
in throughput seen in Figure 3b. Perhaps the time needed
to process a large number of completions before posting a
single list of new work requests causes the adapter’s work
queue to empty. In all cases, posting multiple work requests
produces less dependence on the number of buffers than
does single posting of work requests.

E. Blast example, large messages, multiple buffers

We next examine the effects of the buffer count and
message size on large messages, using RDMA WRITE
without inline (since inline can be used only with small

messages). We vary the buffer count from 1 to 128 for
1, 8, 32, and 64 kibibyte messages, and post multiple
work requests per list. Figure 4a shows that 64 kibibyte
messages have the lowest CPU utilization when using event
notification, and, for all message sizes examined, using more
than 4 buffers has little or no effect on CPU utilization. The
one-way time, shown in Figure 4b, and throughput, shown in
Figure 4c, both increase as message size increases. Also, for
both one-way time and throughput, busy polling and event
notification results converge given enough buffers (ranging
from 2 or more buffers for 64KiB to 5 or more for 1KiB).

Next we study the effect of each opcode set for large
message transfers. We vary the message size from 1 kibibyte
to 256 mibibytes and use only 4 buffers, as it was just shown
that using more buffers produces no performance gains. The
CPU usage for the active and passive side of each transfer
is shown in Figure 5a and Figure 5b, respectively. Active
side CPU utilization generally decreases with message size,
although there is a bump around 8KiB. Passive side CPU uti-
lization is always 0 for RDMA WRITE and RDMA READ,
but is similar to the active side for SEND/RECV and
RDMA WRITE WITH IMM/RECV. One-way time, shown
in Figure 5c, and throughput, shown in Figure 5d, both

782

 1000

 2000

 4000

 8000

 16000

 25600
 32000

 1 2 4 8 16

M
eg

ab
its

 p
er

 s
ec

on
d

Buffer count

RDMA_WRITE, QDR
RDMA_WRITE_WITH_IMM/RECV, QDR

SEND/RECV, QDR
RDMA_READ, QDR

RDMA_WRITE, DDR
RDMA_WRITE_WITH_IMM, DDR

SEND/RECV, DDR
RDMA_READ, DDR

RDMA_WRITE, SDR
RDMA_WRITE_WITH_IMM/RECV, SDR

SEND/RECV, SDR
RDMA_READ, SDR

(a) Average throughput.

 0

 50

 100

 150

 200

 250

 1 2 4 8 16

M
ic

ro
se

co
nd

s

Buffer count

RDMA_READ, SDR
SEND/RECV, SDR

RDMA_WRITE, SDR
RDMA_WRITE_WITH_IMM/RECV, SDR

RDMA_READ, DDR
SEND/RECV, DDR

RDMA_WRITE, DDR
RDMA_WRITE_WITH_IMM/RECV, DDR

RDMA_READ, QDR
SEND/RECV, QDR

RDMA_WRITE, QDR
RDMA_WRITE_WITH_IMM/RECV, QDR

(b) Average one-way time.

Figure 7. Blast with each opcode set and each Infiniband speed with busy polling for 64KiB messages using multiple buffers with multiple work requests
per posting.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8 16 32 64 128 256 512

M
ic

ro
se

co
nd

s

Message size (bytes)

RDMA_WRITE RoCE
SEND/RECV RoCE

RDMA_WRITE_WITH_IMM RoCE
RDMA_READ RoCE

RDMA_WRITE IB
SEND/RECV IB

RDMA_WRITE_WITH_IMM IB
RDMA_READ IB

(a) Average one-way time with each
opcode set for small messages using
one buffer.

 1

 10

 100

 1000

 10000
 20000
 30000

 1 2 4 8 16 32 64 128 256 512

M
eg

ab
its

 p
er

 s
ec

on
d

Message size (bytes)

RDMA_READ RoCE
RDMA_WRITE_WITH_IMM RoCE

RDMA_WRITE RoCE
SEND/RECV RoCE

RDMA_READ IB
RDMA_WRITE IB

RDMA_WRITE_WITH_IMM IB
SEND/RECV IB

(b) Average throughput with each
opcode set for small messages using
one buffer.

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 128

M
ic

ro
se

co
nd

s

Buffer count

64KiB message RoCE
64KiB message IB

8KiB message RoCE
8KiB message IB

1KiB message RoCE
1KiB message IB

(c) Average one-way time with
RDMA WRITE for large messages
using multiple buffers with multiple
work requests per posting.

 1

 10

 100

 1000

 10000
 20000
 30000

 1 2 4 8 16 32 64 128

M
eg

ab
its

 p
er

 s
ec

on
d

Buffer count

64KiB message, IB
8KiB message IB

64KiB message, RoCE
8KiB message RoCE

1KiB message IB
1KiB message RoCE

(d) Average throughput with
RDMA WRITE for large messages
using multiple buffers with multiple
work requests per posting.

Figure 8. Comparison of QDR Infiniband and RoCE for blast with busy polling.

perform best for busy polling up to about 16 kibibytes, at
which point there is no difference between busy polling and
event notification. At 32 kibibytes and above, the transfer
operation also has no effect on performance.

F. Completion signaling

All tests so far used full signaling. In this test we
use blast with RDMA WRITE and 16 byte messages to
compare full signaling, where every request is signaled,
against periodic signaling, where only one work request out
of every nbuffers/2 is signaled. Effects are visible only
when using more than 2 buffers, since otherwise we signal
every buffer. Both one-way time in Figure 6a and throughput
in Figure 6b show much better performance when using one
work request per post than when using multiple requests
per post. But there is no performance difference between
full and periodic signaling with one work request per post,
and with multiple work requests per post the only effect of
periodic signaling is to decrease performance when there
are 4, 8 or 16 buffers. We believe this is due to the fact that

in the blast example all buffers need processing after they
are transferred, so not signaling for a completion just delays
that processing until a signaled completion occurs, at which
point all buffers transferred up to that time are processed in
a big batch, breaking the flow of new transfer postings.

An example without this batching effect is ping with
an active client using RDMA WRITE to push messages
and RDMA READ to pull them back from a passive
server. Every RDMA WRITE can be unsignaled because
its buffer does not need any processing after the transfer.
Figure 6c shows that one-way time is always lower when
the RDMA WRITE is unsignaled, more so with event
notification, less so with busy polling. This figure also shows
remarkably little variation with message size.

G. Infiniband speed comparison

All previous tests were done at QDR speed, the maximum
supported by our adapter. However, Infiniband adapters can
be configured to run at several speeds, as shown in Gigabits
per second (Gbps) in Table I. Usable Gbps is 20% lower than

783

raw Gbps due to 8b/10b encoding on serial lines. Figure 7a
shows that throughput doubles from near the SDR maximum
of 8 usable Gbps to near the DDR maximum of 16, but it
does not double again from DDR to QDR. The observed
25.6 Gbps for QDR is about 20% lower than the expected
32 Gbps due to the overhead of the PCIe-2 bus, an impact
also noted in [2] and [18]. PCIe-2 overhead also shows up
in Figure 7b, where the observed DDR one-way time of
33 microseconds is half the 66 observed for SDR, but the
observed QDR time of 21 microseconds is 20% greater than
the expected 16.5.

Designation raw usable Gbps over
Gbps Gbps PCIe-2

IB 4X SDR 10 8 8
RoCE 12.5 10 10

IB 4X DDR 20 16 16
IB 4X QDR 40 32 25.6

Table I
INFINIBAND AND ROCE SPEEDS.

H. Infiniband and RoCE comparison

We next compare 10 Gbps RoCE with 25.6 Gbps QDR
Infiniband. Looking first at small messages for each opcode
set, Figure 8a shows one-way times for Infiniband are less
than a microsecond lower than those for RoCE, and Fig-
ure 8b shows that although QDR Infiniband has much greater
maximum throughput than RoCE, there is little observable
difference for small messages.

Examining larger messages transferred with
RDMA WRITE, the differences between Infiniband
and RoCE are greater. One-way time and throughput for
1, 8, and 64 kibibyte messages are shown in Figure 8c
and Figure 8d. For all large message sizes, one-way time
is roughly proportional to message size and is essentially
independent of the buffer count for both technologies,
but as message size increases, one-way time for RoCE
increases faster than for Infiniband. When using one
buffer, the throughput increases with message size for both
technologies, but as the buffer count increases, all of the
RoCE curves converge near its maximum 10 Gbps, whereas
for Infiniband, the 8 and 64 kibibyte curves converge near
the higher QDR maximum of 25.6 Gbps and only the 1
kibibyte curve converges at 10 Gbps.

IV. CONCLUSIONS

In all situations performance is much more sensitive to
the choice of RDMA options when using small messages
than when using large messages.

For all 4 opcode sets with small messages up to 4
kibibytes, much lower one-way time and much higher
throughput are achieved by using busy polling rather than
event notification to wait for completions. For messages
of 16 kibibytes and larger both busy polling and event
notification produce the same one-way time and throughput.
But busy polling also causes 100% CPU utilization for all

message sizes, compared to about 20% with event notifica-
tion for small messages up to 512 bytes and 0% for messages
of 4 mibibytes or more.

Regardless of whether busy polling or event notification
is employed, messages smaller than the cache line size give
noticeably better one-way times for opcode sets that use
inline, with a slight improvement in throughput but slightly
higher CPU utilization with event notification. Although the
amount of inline data allowed depends on the implementa-
tion, it always makes sense to use inline whenever adapters
support it.

An application must use the opcode best for its needs.
In situations such as ping, where both sides need to know
when data arrives, the choice is limited to SEND/RECV and
RDMA WRITE WITH IMM/RECV, both of which perform
essentially equally. For each of these, busy polling and inline
always give better one-way times and throughput, but higher
CPU utilization.

For all message sizes the choices for completion detection
and inline are more significant factors in determining perfor-
mance than the opcode, which may be limited by application
demands. For example, RDMA READ and RDMA WRITE
result in no CPU utilization on the passive side, which may
be important for passive side scalability. More often, both
sides of a transfer need to know when it completes, in which
case SEND/RECV or RDMA WRITE WITH IMM/RECV
is best, and if messages are small enough to allow inline
then the SEND or RDMA WRITE WITH IMM could also
be unsignaled.

It is best to have between 3 and 8 transfers simulta-
neously queued on the adapter. With small messages this
number should be closer to 8; for large messages closer to
3. Using more buffers gives no performance increase, so
staying within these limits avoids consuming extra adapter
resources. Our studies on buffer numbers do not consider
the additional delay introduced when communicating nodes
are separated by any significant distance. Clearly a longer
communications channel can store more buffers in transit, so
that more simultaneously queued buffers would be necessary
to keep the channel full, especially when small messages are
being transmitted.

In general, rather than collecting work requests into lists
it is better to post them individually as soon as possible and
let the adapter queue them. This ensures that the connection
is kept busy. A list might be used if several work requests
must be created and sent together.

Completion signaling has a small performance impact in
specialized circumstances. Full signaling should be used if
there is any need to process a transfer’s completion, but in
a situation such as ping with RDMA WRITE followed by
RDMA READ, performance improves if the RDMA WRITE
is not signaled.

For small messages there is little performance differ-
ence between RoCE and Infiniband. For larger messages,

784

QDR Infiniband’s 25.6 Gbps outperforms RoCE’s 10 Gbps.
Therefore, if an application only transfers small messages or
network equipment cost is a significant factor, then RoCE
may be appropriate, as it runs over Ethernet wires and
switches that may already be installed. Since the API is
identical across technologies, an application could be written
and tested on RoCE, then migrated to Infiniband. This means
that RoCE may be good for initial RDMA programming or
development, or in applications where high throughput is not
necessary but the other benefits of RDMA are still desired.

Non-RDMA factors are also important. Platforms with
PCIe-2 cannot fully utilize an Infiniband 4X QDR link,
although fabric switches should be able to handle full traffic
volume, even if each endpoint has limited throughput.

ACKNOWLEDGMENT

This research is supported in part by National Science
Foundation grant OCI-1127228.

REFERENCES

[1] M. Koop, T. Jones, and D. Panda, “Reducing Connection
Memory Requirements of MPI for InfiniBand Clusters: A
Message Coalescing Approach,” in Seventh IEEE Interna-
tional Symposium on Cluster Computing and the Grid, 2007.

[2] M. Koop, W. Huang, K. Gopalakrishan, and D. Panda,
“Performance Analysis and Evaluation of PCI 2.0 and Quad-
Data Rate InfiniBand,” in Sixteenth IEEE Symposium on High
Performance Interconnects, 2008.

[3] P. Lai, H. Subramoni, S. Narravula, A. Mamidala, and
D. Panda, “Designing Efficient FTP Mechanisms for High
Performance Data-Transfer over InfiniBand,” in International
Conference on Parallel Processing, 2009.

[4] H. Subramoni, P. Lai, R. Kettimuthu, and D. Panda, “High
Performance Data Transfer in Grid Environment Using
GridFTP over InfiniBand,” in International Symposium on
CLuster Computing and the Grid, 2010.

[5] B. Li, P. Zhang, Z. Huo, and D. Meng, “Early Experiences
with Write-Write Design of NFS over RDMA,” in IEEE
International Conference on Networking, Architecture, and
Storage, 2009.

[6] H. Subramoni, G. Marsh, S. Narravula, P. Lai, and D. Panda,
“Design and Evaluation of Benchmarks for Financial Appli-
cations using Advanced Message Queueing Protocol (AMPQ)
over InfiniBand,” in Workshop on High Performance Compu-
tational Finance, 2008.

[7] J. Wu, P. Wyckoff, and D. Panda, “PVFS over InfiniBAnd:
Design and Performance Evaluation,” Ohio Supercomputer
Center, Tech. Rep. OSU-CISRC-5/03-TR25, 2003.

[8] Infiniband Trade Association, “Infiniband Architecture Spec-
ification Volume 1, Release 1.2.1,” Nov. 2007.

[9] P. Grun, Introduction to InfiniBand for End Users. InfiniBand
Trade Association, 2010.

[10] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier,
“Marker PDU Aligned Framing for TCP Specification,” RFC
5044, Oct. 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc5044.txt

[11] H. Shah, J. Pinkerton, R. Recio, and P. Culley, “Direct Data
Placement over Reliable Transports,” RFC 5041, Oct. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc5041.txt

[12] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia,
“A Remote Direct Memory Access Protocol Specification,”
RFC 5040, Oct. 2007. [Online]. Available: http://www.ietf.
org/rfc/rfc5040.txt

[13] Infiniband Trade Association, “Supplement to Infiniband Ar-
chitecture Specification Volume 1, Release 1.2.1: Annex A16:
RDMA over Converged Ethernet (RoCE),” Apr. 2010.

[14] B. Metzler, F. Neeser, and P. Frey, “Softiwarp:
A Software iWARP Driver for OpenFabrics,”
www.openfabrics.org/archives/spring2009sonoma/monday/sof
tiwrp.pdf, 2009.

[15] System Fabric Works, “Soft RoCE,”
www.systemfabricworks.com/downloads/roce, 2011.

[16] OpenFabrics Alliance, “http://www.openfabrics.org.”

[17] OpenFabrics Enterprise Distribution, “www.
mellanox.com/pdf/products/software/OFED PB 1.pdf,”
2008.

[18] National Instruments, “PCI Express – An
Overview of the PCI Express Standard,”
http://zone.ni.com/devzone/cda/tut/p/id/3767, 2009.

785

