
A Performance Study Of InfiniBand Fourteen Data Rate (FDR)
Qian Liu, Robert D. Russell

Department of Computer Science, University of New Hampshire
Durham, New Hampshire 03824, USA

qga2@unh.edu, rdr@unh.edu

Keywords: RDMA, InfiniBand, Fourteen Data Rate,
NUMA, RDMA WRITE WITH IMM

Abstract
This paper evaluates the performance of Remote Direct Mem-
ory Access (RDMA) using the InfiniBand Fourteen Data Rate
(FDR) Channel Adapter (CA). InfiniBand RDMA allows ap-
plications to move data directly between nodes without ker-
nel intervention or extra data copying. While RDMA trans-
fer is fast, this study shows that performance can be hin-
dered by factors such as message buffer misalignment, inef-
ficient work request signaling, cache limitations, and ineffi-
cient CPU and NUMA memory access. This paper presents
recommendations for achieving optimal performance when
using the RDMA WRITE WITH IMM verb. We are able to
improve performance by up to 40% in some cases with no
extra overhead. In addition, we develop formulas to predict
the best combination of some user-level RDMA operational
parameters which could generate optimal throughput.

1. INTRODUCTION
Remote Direct Memory Access (RDMA) provides a reli-

able, message-oriented[1] transport protocol to directly trans-
fer data between user-space virtual memory on different ma-
chines without kernel intervention and extra copying. In this
paper, all access to RDMA is via the OFA verbs interface[2].
Unlike the traditional TCP/IP protocol, an RDMA implemen-
tation provides two types of transfer semantics[3]: channel se-
mantics and memory semantics. Channel semantics are “two-
sided” SEND/RECEIVE operations, which means both the
sender and receiver must post a work request (WR) for data
transfer. In either type of WR, buffers used to send/receive
must be specified, and since those buffers don’t have to be
continuous, a list of Scatter Gather Elements (SGE) is used
in the WR: on the sending side it is responsible for gathering
buffers to send out; on the receiving side it is responsible for
scattering received data into buffers.

On the other hand, memory semantics, only supported in
Reliable Connection (RC), are RDMA READ/WRITE oper-
ations, which require only the “active” side to post a WR. In
this case, the other side is totally “passive” during data trans-
fer. Therefore, memory semantics are “one-sided” operations.
After exchanging its local registered memory buffer informa-
tion with the active side, the passive side does not have to do

anything to transfer the data. It is its channel adapter (CA)’s
responsibility to direct data into its local memory in response
to the active side’s RDMA WRITE; or direct data out of its
local memory in response to an RDMA READ.

Because it is passive in a data transfer, there is no way
for the passive side to know when a data transfer is finished.
For applications that must know when transfer completes, us-
ing only the memory semantics is not suitable. However, the
RDMA WRITE WITH IMM operation solves this problem
for such applications. This operation is an RDMA WRITE
augmented with 4 bytes of immediate data in the header of
the final packet of each message, which causes the passive
side’s CA into whose local memory the data was written to
generate a work completion, which tells the passive side that
the transfer is finished. In this case, the passive side is not to-
tally “passive”, because it must post a receive WR prior to the
start of the data transfer. This WR could be a “dummy” WR,
it doesn’t have to specify a SGE since the memory location
for received data was exchanged previously, and the immedi-
ate data is stored in the work completion at the passive side.
Furthermore, the value of such immediate data can be used
by applications to identify the nature of the message[4].

2. EXPERIMENTAL CONFIGURATION
In order to perform an RDMA WRITE WITH IMM op-

eration, the active sender must know the passive receiv-
ing side’s memory location into which it is going to
write the data. This memory information could be ex-
changed by using SEND/RECEIVE. In addition, the pas-
sive receiving side must post a “dummy” WR for each
RDMA WRITE WITH IMM request before data transfer is
started by the active sender. In our testing program, the pas-
sive receiver sends an explicit ACK back after it receives
a message, and in turn, the active sender has the credit to
send a new message out after it receives such an ACK from
the receiver. The sending of RDMA WRITE WITH IMMs
by the sender and the sending of ACKs by the receiver are
“batched”, so that most of these sends are not signaled, thus
reducing completion processing overhead[5]. Further investi-
gation of this topic is in section 3.7.

Our test program uses a wait-wakeup mechanism by de-
fault: when the receiver is waiting for messages, it goes
to sleep and releases the CPU. When at least one message
is received, the receiver is awakened by a completion no-

mailto:qga2@unh.edu
mailto:rdr@unh.edu

tification event generated by CA. Likewise, after posting
RDMA WRITE WITH IMM WRs, the sender goes to sleep
and releases the CPU, and it wakes up when at least one mes-
sage finishes sending. All transfers use RDMA Reliable Con-
nection (RC) mode.

Tests are performed between two identical nodes, each
consisting of a twin 4-core Intel Xeon 2.4GHz Sandy Bridge
CPU and two NUMA nodes, with 64GB RAM and PCIe-3.0,
running OFED 3.5[2] on Scientific Linux 6.3 with kernel ver-
sion 2.6.32. Each node has a Mellanox[6] MT27500 CA with
64-byte cache line and firmware version 2.11.1250. The CA
port is configured for InfiniBand[3][7] 4X FDR ConnectX-3
with 4096-byte MTU. Nodes are connected via a Mellanox
SX6036 FDR-capable switch. Hyper-Threading[8] technol-
ogy and CPU throttling are disabled.

FDR performance in this paper is measured at the OFA
verbs interface[2]. Other papers[9] have dealt with high-level
HPC and Cloud performance over FDR. We focus on two
metrics: throughput and CPU time. Throughput is user pay-
load throughput, which is computed as the total amount of
user data transferred divided by the elapsed time, where
elapsed time refers to the total real time between when the
first transfer begins and the last transfer finishes. CPU time
refers to the total time the program spends in user space and
kernel space. When using the wait-wakeup mechanism, the
time a program waits for work completions is not included in
either CPU time, since the program releases the CPU during
that time.

In our tests, we perform memory-to-memory data transfers
using the RDMA WRITE WITH IMM operation for differ-
ent message sizes. In general, larger messages result in higher
throughput because there is less overhead per message. For
that reason, we limit our studies to message sizes of 32 kibi
(Ki) bytes or more. (Messages smaller than this are preferred
when minimum latency, not maximum throughput, is the de-
sired goal.) In order to get accurate performance measure-
ments, the sender should send enough messages to let per-
formance settle down to a stabilized point. According to our
tests, sending data for 10 seconds keeps performance at a sta-
ble level. We send 64Gi bytes of data from the sender to the
receiver in all our tests.

3. PERFORMANCE RESULTS
3.1. Effect Of CA Connection

In most of our tests, both CAs are connected via a switch.
However, CAs can also be connected back-to-back. Com-
pared to a back-to-back connection, obviously there should
be a small amount of overhead introduced by the switch, due
to the look up and forwarding according to the DLID and SL
fields in incoming packets[4].

Figure 1 shows the throughput comparison of these two
connection configurations, in which the solid line (connec-

(a) Message size = 256Ki.

(b) Message size = 1Mi.

Figure 1: Throughput comparison between different CA connections

tion via switch) is overlapped with the dashed line (connec-
tion back-to-back). This indicates that, regardless of message
size and number of outstanding messages, there is nearly no
performance difference if the switch is not heavily loaded.

3.2. Effect Of Data Alignment
Most conventional Network Interface Controllers require

allocated buffers to be aligned on specific byte boundary for
efficient memory access[10]. Although there is no such re-
quirement in the InfiniBand specification[3], we evaluated
such behavior to see if it has a performance impact.

For each message, we allocated a block of memory aligned
on a page boundary (4096 bytes), but the message address
used in the transfer is setup at different offsets within that
block. Figure 2 shows the throughput comparison among dif-
ferent message offsets.

For different numbers of outstanding messages, Figure 2
illustrates that throughput is always better when the message
is aligned on a multiple of 64-bytes, which is the processor’s
cache line size in our systems. PCIe-3 allows an I/O device
to read/write its data directly from/to CPU caches in order to

provide stronger coupling between system cache/memory hi-
erarchy and the I/O device[11]. This feature brings significant
improvement in HPC communications. The Mellanox FDR
HCA seems to be doing this, as shown in Figure 2. When
message size is 512Ki, there are obvious differences among
various offsets: if a message is not aligned on a multiple of
the cache line size, throughput downgrades by up to 20% if
the number of outstanding messages is greater than or equal
to 4. However, if the number of outstanding messages is 1,
the difference among offsets is not obvious as CA utilization
is low in this case: it takes very little time to send data, after
which the CA is idle until the next send WR is posted.

(a) Message size = 512Ki. 5% to 23% throughput improvement if mes-
sage is aligned on cache line size

(b) Message size = 8Mi. 40% throughput improvement if message is
aligned on cache line size

Figure 2: Throughput comparison among different message offsets

On the other hand, when the message size is large enough,
CA is always in busy state. In other words, there are always
unsent packets queued up in the channel. In this case, the
CA is working much more than it is idle, so the through-
put curves under various numbers of outstanding messages
are overlapped, and the difference caused by various num-
bers of outstanding messages is much less. Figure 2b illus-
trates this condition for 8Mi messages, where throughput is

(a) Message size = 512Ki.

(b) Message size = 8Mi.

Figure 3: Total CPU time comparison among different message offsets

improved by 40% (from 34Gbits/s to 47.75Gbits/s) if mes-
sages are aligned on a multiple of the cache line size.

When messages are aligned on a multiple of the cache
line size, throughput is much better than with other message
buffer alignments, and this higher throughput does not require
extra system resources. Figure 3 shows that the CPU time (to-
tal time program spent in user space and kernel space) for the
two message sizes used in Figure 2 is essentially the same
for all message offsets, which proves message alignment on
a multiple of the cache line size doesn’t add extra overhead.
On the contrary, this alignment is a significant factor which
will improve RDMA transfer throughput, and we used it in
all other tests in this paper, including those in Figure 1.

3.3. Effect Of User-level Parameters
Basically, there are two key user-level parameters that have

a significant impact on throughput:
1) The number of bytes in each message (Message Size).

As mentioned before, we limited our studies to message sizes
of 32Ki bytes or more in order to get maximum throughput.

2) The number of messages that are simultaneously out-

standing. In general, more outstanding messages result in
higher throughput because there is better utilization of the CA
and fabric resources.

Figure 4 illustrates throughput for different message sizes
with various numbers of outstanding messages. Both user-
level parameters have an obvious effect on throughput. When
the message size is relatively small, such as 32Ki, through-
put is very low if the number of outstanding messages is also
small, due to the low CA utilization under such conditions.
For instance, if the sender only sends one 32Ki message each
time, and then waits for the receiver’s ACK before sending the
next message, the CA is idle until the next send WR is posted
and throughput is only 10 Gigabits per second (Gbits/s). On
the other hand, if the sender posts 16 or 32 32Ki messages
at the same time, then throughput is much higher, more than
45Gbits/s. However, if the message is relatively large, for in-
stance, more than 8Mi, the throughput achieved with different
numbers of outstanding messages is almost identical, since
such messages are large enough to always keep the CA busy.
Therefore, even if the number of outstanding messages is 1 in
this case, the idle time the sender waits for an ACK from the
receiver is not significant.

Figure 4: Throughput under different message sizes and numbers of outstanding mes-
sages

Figure 5 shows the CPU times for different message sizes
with various numbers of outstanding messages. As mentioned
before, in order to transfer the same amount of data from
sender to receiver, more messages have to be sent if each
message is small. When the message size is 32Ki, and the
number of outstanding messages is 1, Figure 5 shows that the
total CPU time is close to 20 seconds when sending 64Gi
bytes of data. Due to the wait-wakeup mechanism, the pro-
gram more frequently goes to sleep and is then awakened by
a completion notification event. Therefore, it spends consid-
erable time in user and kernel space. On the other hand, when

Figure 5: CPU time under different message sizes and numbers of outstanding messages

Figure 6: Total elapsed time to transfer 64Gibibytes of data

the message size is larger, fewer messages need to be sent,
so the program is less frequently put to sleep and awakened.
Therefore, it spends less time in user and kernel space.

Figure 6 illustrates the total elapsed time to transfer 64Gi
bytes of data. In this figure, as either message size or number
of outstanding messages increases, less total time is needed.
This behavior is related to CA utilization. When CA utiliza-
tion is very low, i.e. message size is 32Ki and the number of
outstanding messages is 1, total elapsed time is close to 60
seconds. The program spends too much time in user and ker-
nel space, and it takes more time to transfer a fixed amount
of data to the receiver because of low CA utilization. On the
other hand, if the number of outstanding messages is 32, as
shown by the solid line with triangle points in Figure 6, al-
though there are still more messages to be sent and the pro-

gram has more chance to be awakened in this case, CA uti-
lization is much higher because messages are queued up in
the channel all the time. High CA utilization results in high
throughput. Therefore, the total time is around 12 seconds.

3.4. Effect Of Caching
In Figure 1 and 4, there are a few points where the

throughput drops. For instance, in Figure 1b, if the num-
ber of outstanding messages is 4, throughput is at its highest
level of about 49Gbits/s. However, throughput drops to about
46Gbits/s if the number of outstanding messages increases
to 5, a drop of about 6%. Throughput levels off at the lower
throughput level as the number of outstanding messages in-
creases further. Likewise, in Figure 4, for message sizes such
as 2Mi, 4Mi, etc, there is always a number of outstanding
messages which generates the highest throughput, after which
throughput drops if that number increases. This drop is due to
a limitation on the size of the caches involved in data transfer.

Figure 7: Throughput impacted by cache hit and cache miss for 1Mebibyte messages

Figure 7 compares the throughput (dashed line) when each
message uses a separate memory area so that the cache is
never hit, with the throughput (solid line) when the cache
is always hit, which means no cache item is ever replaced
even though the number of outstanding messages specified is
greater than the number of outstanding messages which can
generate the highest throughput. The solid line results were
produced by using the same memory area in each WR to guar-
antee that a cache item would always be hit.

The dashed line shows throughput is at its highest level if
the number of outstanding messages is 4, drops if that num-
ber increases to 5, and then levels off at the lower throughput
level for 6 or more outstanding messages. However, the solid
line shows that if there is no cache miss when sending more
than 4 messages simultaneously, throughput does not drop,

but remains at its highest level.
This throughput drop could be prevented by utilizing the

same memory area for all messages. However, this is not al-
ways realistic, since data for different messages may be stored
in different memory locations. In order to avoid such a cache
limitation and get the highest throughput, we present an ap-
proach to predict the number of outstanding messages for var-
ious message sizes to achieve their highest throughput.

(a) Number of outstanding messages (B) comparison

(b) Throughput comparison

Figure 8: The predicted “best B” and the observed “best B”

3.5. Predicting Optimal Number Of Outstand-
ing Messages

For each message size, there is one number of outstanding
messages (B) which generates the highest throughput, called
“best B”. Because of the cache limitation, throughput will
drop if more than B messages are simultaneously outstand-
ing. In order to avoid this cache impact, Equation 1 is used to

predict a nearly optimal “best B” that gives a nearly maximal
throughput for each message size.

bestB =

{
min(d 3Mi

MessageSize e,128) MessageSize≤ 128Ki

max(d 4Mi
MessageSize e,2) MessageSize > 128Ki

(1)

For relatively larger messages, posting only one message
each time could cause a time gap between messages, during
which the CA is idle. In order to avoid this gap, it’s better
to send at least 2 messages simultaneously for message sizes
greater than 4Mi. For relatively smaller messages, the max-
imum number of outstanding messages shouldn’t be greater
than 128 in order to avoid the cache limitation.

Figure 8a compares the observed “best B” (solid line) with
the predicted “best B” (dashed line) from Equation 1. Fig-
ure 8b compares the highest observed throughput with the
throughput generated by using our predicted “best B”.

The dashed line in Figure 8b shows our predicted “best B”
produces the maximum throughput in most cases. For a few
message sizes throughput achieved is at worst 1% lower than
the maximum. The only exception is at message size 8Mi,
where throughput is 3% lower than the maximum, since the
predicted “best B” is 2, compared to the observed “best B” of
1.

3.6. Effect Of Completion Notification
RDMA transfer is asynchronous[3]: transmission starts

when a WR is posted to the CA’s send queue, and finishes
when a corresponding work completion is generated in the
completion queue. An application can employ two strategies
to monitor such completions. One is the wait-wakeup mech-
anism used in most of our testing: the program goes to sleep
while the CA is sending or receiving data, and it is awak-
ened when the CA generates a work completion. Both going
to sleep and waking up require OS intervention. The other
strategy is busy-polling, which means the application will not
go to sleep but poll the completion queue repeatedly until a
work completion generated. Under such a strategy, through-
put should be better since there is no overhead caused by the
OS, so the program will get completed events in real time.
Figure 9 shows the highest throughput difference between
the wait-wakeup (solid line) and busy-polling (dashed line)
mechanisms.

Using busy-polling (dashed line), the highest throughput
achieved by each message size is slightly more than 50Gbits/s
in most cases. However, if the message size is greater than
8Mi, throughput drops to 47Gbits/s. This drop is caused by
the cache limitation discussed previously. When using wait-
wakeup (solid line), the highest throughput is slightly less
than 50Gbits/s, which is never as high as the dashed line. This
is entirely due to the OS intervention needed by wait-wakeup
in order to put a program to sleep, deliver a completion noti-
fication to it, and then reschedule it onto a processor. Busy-

Figure 9: The highest observed throughput comparison between busy-polling and wait-
wakeup mechanism

Figure 10: Comparison of corresponding CPU usage for Figure 9

polling completely bypasses the OS, since the user program
directly polls the CA.

Although it can achieve higher throughput, busy-polling
spends too much CPU time repeatedly polling the comple-
tion queue during which it never releases the CPU. For those
points where the highest throughput is achieved in busy-
polling and wait-wakeup, as shown in Figure 9, Figure 10
compares their corresponding CPU usages. The trade-off is
obvious. Busy-polling (dashed line) always takes 100% of
the available CPU cycles, while wait-wakeup (solid line) uses
fewer CPU cycles as the message size increases, since there
are fewer messages that have to be sent for the same total
amount of data when the message size is large. CPU time is
close to 0% for large enough messages. Users can choose be-

tween these two options depending on the relative importance
of increased throughput or increased CPU usage.

3.7. Effect Of Completion Signaling
[5] compares full signaling (signal every send WR) and pe-

riodic signaling (only signal a send WR for every B/2 send
WRs, in which B is the number of outstanding messages) for
RDMA READ and RDMA WRITE with inline data. In this
paper, we investigate an approach to improve throughput by
periodically signaling a send WR for bulk data transmission
using RDMA WRITE WITH IMM. Note that receive WRs
are always signaled, the application has no choice.

Whether a RDMA WRITE WITH IMM WR is signaled
or not has an effect on performance, because a signaled send
WR generates a work completion which will be caught and
processed by the OS if wait-wakeup is used. Accordingly,
overhead is added by this OS intervention. An unsignaled
send WR, on the other hand, will not generate a work com-
pletion or extra OS overhead. The ideal situation would be if
all send WRs were unsignaled, because then no extra over-
head would be added. However, if that were done, the send
queue (SQ) and/or the completion queue (CQ) would even-
tually overflow, since unsignaled send WRs take resources in
these queues. In order to avoid such queue resource deple-
tion, a signaled WR must be sent periodically, once every S
WRs. The completion of this signaled WR will “confirm” that
previous unsignaled WRs posted for the same SQ and CQ ac-
tually completed, and it will also release the queue resources
taken by those unsignaled WRs.

In order to improve performance, S should be large enough
to guarantee that the added overhead be as low as possible. On
the other hand, S should be small enough to guarantee that
completion of the signaled WR would release the resources
taken by unsignaled WRs in time to prevent overflow in the
CA’s queues. We use the following formula to determine S.

S =

{
min(B

2 ,1) 16Ki<MessageSize<128Ki
min(SQ DEPT H

2 ,SQ DEPTH - B) otherSizes
(2)

In Equation 2, SQ depth is the actual send queue depth set
by the CA. On some CAs, the actual SQ/RQ/CQ depths are
not always identical to the values given by the user with the
ibv create qp verb. The CA may increase those values based
on considerations specific to its implementation.

According to our findings, some small messages will gain
a small performance improvement if every send WR is sig-
naled, but for most message sizes, especially larger messages,
only sending a signaled WR periodically according to our for-
mula helps to fully utilize the CA and improve performance.

Figure 11 compares the throughput when using wait-
wakeup for various message sizes sent using our predicted
“best B”. Three mechanisms for how often to send a signaled

Figure 11: Throughput comparison of various WR signaling mechanisms. Predicted
“best B” is used for the number of outstanding messages

WR are compared: signal every WR sent (solid line with cir-
cle points); send a signaled WR for every B/2 WRs (solid
line); and send a signaled WR for every S WRs (solid line
with triangle points), where S is determined by Equation 2.

The solid line with triangle points in Figure 11 shows
that by using our Equation 2 to decide when to send a sig-
naled WR, throughput can be maximized over all message
sizes. For most message sizes, throughput improves by 5% to
10% when compared with other WR signaling strategies. For
message sizes greater than 128Ki, throughput is greater than
50Gbits/s, which was shown in section 3.6 to be the highest
throughput achieved under busy-polling. This demonstrates
that periodically sending a signaled WR according to Equa-
tion 2 under wait-wakeup not only produces the best through-
put (50Gbits/s) achieved under busy-polling, but saves many
CPU cycles compared to busy-polling. For message sizes
greater than or equal to 8Mi, there is almost no difference
between these 3 signaling mechanisms, since the impact of
the cache limitation is greater than the reduced overhead con-
tributed by not processing the additional completions.

3.8. Effect Of NUMA Affinity
Multi-core nodes with Non-Uniform Memory Access

(NUMA) are common for HPC platforms. With NUMA,
memory is physically distributed into different memory
banks, and the times required for a processor to access vari-
ous memory banks are different. Thus, on systems with more
than one NUMA node, performance would be better when
a program uses the local NUMA node to which the CA is
connected[12][13].

Therefore, another element which could improve perfor-
mance is CPU and memory affinity, because the overhead in-

troduced by physical memory access could be minimized. On
the machines used for our tests, there are two NUMA nodes,
and our CAs are connected to NUMA node 0 according to the
following detection command given in [13].

cat /sys/class/in f iniband/[inter f ace]/device/numa node (3)

Figure 12 compares four affinity combinations: (i) both re-
ceiver and sender running without any affinity (the way all
previous tests were run); (ii) only receiver running with CPU
and memory affinity; (iii) only sender running with CPU and
memory affinity; (iv) both receiver and sender running with
CPU and memory affinity. The “best B” is used for each mes-
sage size to achieve the best throughput.

Figure 12: Throughput comparison when using NUMA affinity, the observed “best B”
is used for the number of outstanding messages

Figure 13: Throughput comparison when using NUMA affinity, the observed “best B”
is used for the number of outstanding message

From Figure 12, if only the receiver is running with
CPU and memory affinity (solid line with triangle points),
throughput is better than our original tests which ran with-
out any affinity (solid line) at message sizes 32Ki, 256Ki,
512Ki, 1Mi, 2Mi, 4Mi and 8Mi. If only the sender is run-
ning with CPU and memory affinity (solid line with cir-
cle points), throughput is lower than that of our original
test in most cases. When both sender and receiver are run-
ning with CPU and memory affinity (solid line with box
points), performance does not improve. It seems that for
RDMA WRITE WITH IMM, only running the receiver side
with CPU and memory affinity improves performance, and
then only for some message sizes.

However, on two other nearly identical platforms, which
are also connected via the same Mellanox SX6036 switch,
throughput shows different behavior when using NUMA
affinity. Figure 13 illustrates this affinity comparison, in
which the “best B” is used for each message size to achieve
the best throughput. Compared to running both sender and
receiver without affinity (solid line), running both sender and
receiver with CPU and memory affinity (solid line with box
points) will improve throughput significantly by up to 20%.

We believe that differences in machine architecture cause
the difference in performance when using NUMA affinity.
One of these two nearly identical nodes has a twin 4-core
Genuine Intel 2.3GHz Sandy Bridge CPU and two NUMA
nodes, the other has a twin 8-core Genuine Intel 2.6GHz
Sandy Bridge CPU and two NUMA nodes. Both nodes have
64GB RAM and PCIe-3.0 running OFED 3.5[2] on Scien-
tific Linux 6.3 with kernel version 2.6.32. Both nodes have a
Mellanox[6] MT 27500 Family CA with 64-byte cache line
and firmware version 2.11.500. The CA port is also config-
ured for InfiniBand[3][7] 4X FDR ConnectX-3 with 4096-
byte MTU. The interaction between NUMA affinity and ma-
chine architecture deserves further investigation.

4. CONCLUSION
According to our findings, connecting CAs through a

switch versus back-to-back does not cause any significant dif-
ference in RDMA performance, whereas different completion
notification methods do have a significant impact. However,
the relatively higher throughput achieved under busy-polling
is obtained at the cost of 100% CPU time.

In all cases performance is much more sensitive to mes-
sage alignment, with better throughput if the starting address
of a message is aligned on a multiple of the cache line size.
When using wait-wakeup, the highest throughput we can get
is about 50Gbits/s, lower than the expected 54.54Gbits/s, the
theoretical maximum throughput for FDR 4X. This is due to
protocol and other overheads such as the PCIe-3 bus over-
head, an impact also noted in [14].

Cache limitation has a negative impact on RDMA per-

formance. By using our Equation 1, this limitation can be
avoided, and the nearly optimal number of outstanding mes-
sages (B) can be predicted for each message size. The
throughput achieved by using the “predict B” is always close
to or equal to the best achievable throughput.

Periodically sending a signaled WR not only prevents over-
flow in the CA’s queues, but reduces overhead caused by com-
pletion processing on the sending side of a transfer, which in
turn improves the performance. By using our Equation 2 to
predict the signaling frequency, throughput can be maximized
over all message sizes. Compared to other WR signaling
strategies, throughput can be improved by 5% to 10% by us-
ing our Equation 2 to periodically send a signaled WR. Under
wait-wakeup, sending a signaled WR periodically achieves
the best throughput (50Gbits/s) produced under busy-polling.
Unlike busy-polling, this best throughput is achieved with
fewer CPU cycles.

NUMA affinity also has effect on RDMA performance.
Due to the large amount of data usually transferred in in-
dustry and scientific applications, memory accessing time be-
comes a critical factor which impacts performance. Specify-
ing NUMA affinity may provide better performance, although
it doesn’t always improve performance. This effect could be
caused by differences in machine architectures, which needs
future investigation.

5. ACKNOWLEDGMENT
The authors would like to thank our funding agency. This

research is supported in part by National Science Foundation
grant OCI-1127228.

REFERENCES
[1] Recio, Renato, Bernard Metzler, Paul Culley, Jeff Hil-

land, and Dave Garcia. 2007. “A Remote Direct Mem-
ory Access Protocol Specification”. RFC 5040. Internet
Engineering Task Force. http://www.ietf.org/
rfc/rfc5040.txt

[2] OpenFabrics Alliance. http://www.
openfabrics.org

[3] Infiniband Trade Association. 2007. Infiniband Archi-
tecture Specification Volume 1, Release 1.2.1. http:
//www.infinibandta.org/

[4] Shanley, Tom. 2002. Infiniband Network Architecture.
Addison Wesley, Reading, MA.

[5] Macarthur, Patrick, and Robert D. Russell. 2012. “A
Performance Study to Guide RDMA Programming De-
cisions.” 2012 IEEE 14th International Conference on
High Performance Computing and Communications,
HPCC ’12, (Liverpool, UK, June 25-27). IEEE, New
York, NY, 778-785.

[6] Mellanox Technologies. http://www.mellanox.
com

[7] Grun, Paul. 2010. “Introduction to InfiniBand for End
Users.” InfiniBand Trade Association. https://cw.
infinibandta.org/document/dl/7268

[8] Intel. “Intel Hyper-Threading Technology.”
http://www.intel.com/content/www/
us/en/architecture-and-technology/
hyper-threading/
hyper-threading-technology.html

[9] Vienne et al. 2012. “Performance Analysis and Evalua-
tion of InfiniBand FDR and 40GigE RoCE on HPC and
Cloud Computing Systems.” In High-Performance In-
terconnects, 20th Annual Symposium on (Santa Clara,
CA, 22-24 Aug). IEEE, New York, NY, 48-55.

[10] Bryant, Randal, David R. O’Hallaron. 2011. Computer
Systems: A Programmer’s Perspective (2nd Edition).
Prentice-Hall, Boston, MA.

[11] Ajanovic, Jasmin. 2009. “PCI Express 3.0 Overview.”
http://www.hotchips.org

[12] Majo, Zoltan, and Thomas Gross. 2011. “Memory Sys-
tem Performance in a NUMA Multicore Multiproces-
sor.” In Proceedings of the 4th Annual International
Conference on Systems and Storage, SYSTOR ’11,
(Haifa, Israel, May 30-June 1). ACM, New York, NY,
127-136.

[13] Mellanox Technologies. 2013. “Performance Tuning
Guidelines for Mellanox Network Adapters.” http://
www.mellanox.com/related-docs/prod_
software/Performance_Tuning_Guide_
for_Mellanox_Network_Adapters.pdf

[14] National Instruments. 2009. “PCI Express – An
Overview of the PCI Express Standard.” Published Au-
gust 13. http://zone.ni.com/devzone/cda/
tut/p/id/3767

Biography
Qian Liu received the BS and MS degree in Computer Sci-

ence from Southwest Jiaotong University, China. He is cur-
rently a PhD student in Computer Science at the University
of New Hampshire.

Robert D. Russell (Ph.D. ’72) is an Associate Professor in
the Computer Science Department and InterOperability Lab-
oratory at the University of New Hampshire. His interests
are in Operating Systems, High Performance Networking,
and Storage. He is also the principal developer and instruc-
tor for the OpenFabrics Alliance (OFA) training courses en-
titled “Writing Application Programs for RDMA Using OFA
Software.”

http://www.ietf.org/rfc/rfc5040.txt
http://www.ietf.org/rfc/rfc5040.txt
http://www.openfabrics.org
http://www.openfabrics.org
http://www.infinibandta.org/
http://www.infinibandta.org/
http://www.mellanox.com
http://www.mellanox.com
https://cw.infinibandta.org/document/dl/7268
https://cw.infinibandta.org/document/dl/7268
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.hotchips.org
http://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
http://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
http://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
http://www.mellanox.com/related-docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf
http://zone.ni.com/devzone/cda/tut/p/id/3767
http://zone.ni.com/devzone/cda/tut/p/id/3767

	Introduction
	Experimental Configuration
	Performance Results
	Effect Of CA Connection
	Effect Of Data Alignment
	Effect Of User-level Parameters
	Effect Of Caching
	Predicting Optimal Number Of Outstanding Messages
	Effect Of Completion Notification
	Effect Of Completion Signaling
	Effect Of NUMA Affinity

	Conclusion
	Acknowledgment

