
IBRMP: a Reliable Multicast Protocol for InfiniBand

Qian Liu, Robert D. Russell

Department of Computer Science
University of New Hampshire

Durham, NH, 03824, USA
Email: qga2@unh.edu, rdr@unh.edu

Abstract—Modern distributed applications in high-
performance computing (HPC) fields often need to
disseminate data efficiently from one cluster to an arbitrary
number of others by using multicast techniques. InfiniBand,
with its high-throughput, low latency and low overhead
communications, has been increasingly adopted as an HPC
cluster interconnection. Although InfiniBand hardware
multicast is efficient and scalable, it is based on Unreliable
Datagrams (UD) which cannot guarantee reliable data
distribution. This makes InfiniBand multicast not the best fit
for modern distributed applications. This paper presents the
design and implementation of a reliable multicast protocol
for InfiniBand (IBRMP). IBRMP is based on InfiniBand
unreliable hardware multicast, and utilizes InfiniBand Reliable
Connection (RC) to guarantee data delivery. According to
our experiments, IBRMP takes full advantage of InfiniBand
multicast which reduces communication traffic significantly.
In our testing environment, using IBRMP is up to five times
faster than using only RC to disseminate data among a group
of receivers. Compared to the MPI Bcast, IBRMP is able to
provide an equivalent low latency service in addition to its
efficiency in large amount of data transmission.

Keywords-HPC; Multicast; InfiniBand.

I. INTRODUCTION

During the past few years, InfiniBand[1], a popular

communications interconnect, has been widely adopted in

data centers, TOP500 supercomputers[2], and other high-

performance computing (HPC) fields. Because it is able to

provide high throughput and low latency service, and is

able to allow nodes to perform their own computation tasks

while receiving data because of its asynchronous operation,

InfiniBand is also gaining popularity in distributed applica-

tions, which usually disseminate data from one sender to

a large group of receivers concurrently. For example, the

University Corporation for Atmospheric Research (UCAR)

Internet Data Distribution (IDD) project[3][4] distributes a

great deal of meteorology data to more than 100 subscribers.

Such an application generally requires a reliable multicast

communication because multicast is an efficient approach

to distribute data among clusters. Although it has benefits

such as scalability and low overhead, InfiniBand multicast is

built on unreliable communication which cannot guarantee

ordering and message delivery. Lack of reliability makes

the original InfiniBand multicast unfit for these distributed

applications. Therefore, a reliable multicast communication

for InfiniBand is necessary.

Most existing multicast protocols which provide reli-

able delivery utilize two popular approaches for end-to-

end reliable multicasting: the sender-initiated approach and

the receiver-initiated approach[5–10]. In the sender-initiated

approach, the sender usually maintains a list which records

the state of all its receivers to whom it has to send multicast

packets and from whom it has to receive ACK packets which

confirm the successful reception of multicast packets. The

sender updates the list for the corresponding packet if it re-

ceives an ACK. Generally, the sender starts a timer for each

packet, and uses the list as an index to retransmit a packet if

the timer expires. In some cases, data retransmission is still

based on multicast which cannot guarantee 100% delivery.

Conversely, in the receiver-initiated approach each receiver

has to notify the sender about any erroneous or missing

packets, at which time the sender re-sends the requested

packets to the receiver. This places the responsibility for

ensuring reliable packet delivery on the receivers.

Several papers[5][6] have demonstrated that the receiver-

initiated approach is more scalable than the sender-initiated

approach. Also several optimization techniques have been

applied to these two approaches. [6][11] propose to arrange

nodes in a tree-based structure, dividing receivers into

groups to achieve scalability with a large receiver set in order

to solve the ACK implosion problem[12]. This shifts the

burden of sending ACKs to a subset of receivers, which serve

as subgroup leaders. Besides acting as normal receivers,

these subgroup leaders, also called intermediate nodes, are

responsible for collecting ACKs from other receivers in the

same subgroup. However, if a group leader fails, a new group

leader must be chosen to act in the same role. Information

collected by the failed group leader has to be delivered to the

new group leader, and other receivers remaining in the same

subgroup have to establish new connections with the new

group leader. This extra burden on receivers might degrade

their local computation.

Other optimizations for a receiver-initiated approach

are designed for peer-to-peer networks and a grid

environment[7][13][14], in which a receiver asks for data

from other receivers instead of the single sender node. In this

approach, a mesh is built to transmit data among receiver

nodes.

For a reliable multicast protocol designed for InfiniBand

communication, it is not always acceptable to take advantage

2014 IEEE 22nd Annual Symposium on High-Performance Interconnects

978-1-4799-5860-3/14 $31.00 © 2014 IEEE

DOI 10.1109/HOTI.2014.24

79

of these improvements. For example, the disadvantage of

implementing mesh sharing structure in IBRMP is that this

approach adds extra processing overhead and a CPU burden

on each receiver node. For instance, if there are N receivers

and each receiver should choose M (M ≤ N) peer receiver

nodes to randomly build its mesh, then a total of (N × M) /

2 queue pairs are built. And receivers have to constantly

communicate with each other while processing incoming

messages. Also, in some application environments such as

IDD, nodes are receiving files selectively, which makes mesh

sharing less effective.

Implementations of MPI Bcast[15][16] have proposed ap-

proaches to achieve reliable multicast in InfiniBand. In[15],

for example, a co-root scheme is used to solve the ACK

implosion problem and also to address the drawbacks of

the tree based ACK collection. Several co-roots help with

both ACK collection and data retransmission. The load

is more evenly distributed among the root and many co-

roots. Another reliable multicast MPI implementation[16]

depends on two-stage data transmission. In the first stage,

the sender node broadcasts data on the multicast link. The

second stage guarantees the data distribution. A virtual ring

is built among all receiver nodes, and whenever a data

packet is received successfully, each receiver sends it to

its direct successor in a reliable way. However, IBRMP

focuses on a network environment where receivers can join

and leave the multicast group at any time, and they are not

necessarily related with each other in any way. Therefore,

it is impractical to maintain a tree or co-root hierarchy

in IBRMP because each receiver has no knowledge about

the other receivers, and it is expensive to find out who

they are and maintain communications. Similarly, IBRMP

cannot build a virtual ring among receivers, since it would

be changing dynamically as receivers join and leave the

multicast group.

Unlike previous work, IBRMP takes full advantage of

InfiniBand hardware multicast, and utilizes InfiniBand Re-

liable Connection (RC) to guarantee data delivery in the

receiver-initiated approach. Details of the IBRMP design

are explained in Section III. Its performance evaluation is

in Section IV.

II. BACKGROUND

InfiniBand Architecture (IBA)[1] defines a switched fabric

network for communication. It provides a management and

processing infrastructure for inter-process communication

and I/O. In an IBA network, nodes are connected to the

fabric by a Channel Adapter (CA), which is similar to

a Network Interface Card (NIC), but is equipped with a

DMA engine and provides direct access interfaces for user-

level applications to bypass Operating System interven-

tion. Taking advantage of Remote Direct Memory Access

(RDMA)[17] technology, InfiniBand is able to provide a

high throughput, low latency, low overhead interconnect and

is widely used in HPC fields and enterprise data centers.

InfiniBand RDMA allows user level applications to move

data directly between nodes without kernel intervention and

extra data copying. It has two types of transport modes:

Reliable Connection (RC) and Unreliable Datagram (UD),

which are similar to TCP and UDP protocols respectively in

TCP/IP networks. But transport modes provided in RDMA

are message-oriented, and ordered delivery can be guaran-

teed in RC mode. Both RDMA transport modes support

SEND/RECEIVE communication operations, in which both

the sender and receiver must post a corresponding work

request (WR) to its Queue Pair (QP) for data transfer. If

there is no available WR posted for receiving, an incoming

UD message will be dropped silently, while an incoming

RC message will be resent. The retry time is based on

negotiation at the connection establishment stage.

InfiniBand provides hardware support for multicast. A

user is able to send a single message exactly once to a

specific multicast address, and the CAs and switches will

replicate it to multiple nodes in the same multicast group.

Because multicast messages get duplicated at switches,

communication traffic is reduced, and sender side overhead

is minimized. Also, InfiniBand multicast latency is not

sensitive to the number of nodes in the multicast group[15].

InfiniBand multicast uses UD transport mode to distribute

messages, which means a single multicast SEND operation

will consume one receive WR at each receiver side. Incom-

ing messages get dropped silently if there is no available

WR posted at receiver side. In InfiniBand multicast, the

sender side never knows whether a message is successfully

delivered to a receiver or not. Therefore, although it provides

a scalable approach to distribute messages, InfiniBand mul-

ticast is an unreliable transport mechanism. It is not fit for

distributing large amount of data among clusters that require

reliable, in-order message delivery.

III. IBRMP DESIGN

This section illustrates the architecture and design details

of our InfiniBand reliable multicast protocol, which follows

the principle concepts of VCMTP[8]. Unlike VCMTP[8],

IBRMP has a simpler design. It doesn’t maintain states in

the sender and the receivers, nor does it perform any state

transitions. In addition, it takes full advantage of InfiniBand

features such as Shared Receive Queues (SRQ). The aim

is to generate a minimal number of threads and occupy

minimal system resources.

A. Architecture Overview

IBRMP is a message-driven based transport protocol,

designed for file distribution among multiple nodes. At the

server (sender) side, a file is segmented into blocks, which

are transferred as messages via InfiniBand. Since message

boundaries are preserved by the transport layer, it is easy

for the client (receiver) side to detect missing messages by

80

comparing the message sequence number of the received

message with that of the previously received message. If

a receiver notices that a message lost, it sends a request

message back to the sender side for retransmission.

IBRMP is provided as a library built on top of The

OpenFabrics Enterprise Distribution (OFED)[18], as shown

in Fig. 1. IBRMP avoids adding extra overhead by not intro-

ducing an extra layer which may add an extra wait-wakeup

mechanism inside the library. The interaction between the

IBRMP library and user-level application is easily done

by using an IPC approach. Also, because it directly uses

RDMA/IB verbs, this library can be integrated with OFED.

Fig. 2 illustrates the inner architectural overview of

IBRMP. The IBRMP sender consists of multiple threads.

The coordinator thread is in charge of the other threads.

It starts the multicast thread (label b) after receiving

the file transmission request from a user level application

(label a). If multiple files are transferred simultaneously,

multiple multicast threads are created, one for each file.

In Fig. 2, three files are transferred at the same time, and

their multicast messages are sent to the InfiniBand switch

(label c). These messages will get duplicated at switch

nodes and sent to each receiver node independently (label

d) in the current multicast group, as shown in the dashed

lines in Fig. 2. Because multicast is based on UD service,

the multicast messages may get lost or dropped. If so,

multicasting the same message many times may increase the

percentage of successful reception of the missing message

on receiver side, but it cannot provide a 100% guarantee.

Therefore, another mechanism, which is able to guarantee

message delivery, must be used for message retransmission.

In IBRMP, RC service is used for retransmission. On the

sender side, an RC request listening thread is responsible for

monitoring new reliable connection requests (label e), and

it forwards such a request event to the coordinator thread

(label f). After that, the coordinator thread creates one

RC retransmission thread for each new connected receiver

(label g). That RC thread is responsible for responding to

Figure. 1: IBRMP Implementation

Figure. 2: IBRMP Overview

requests sent from that receiver node on the other side of

the reliable connection, as label h shows in Fig. 2. The

RC thread waits for a request in a wait-wakeup mechanism,

it doesn’t occupy CPU when waiting for requests. Unlike

the multicast thread which multicasts messages to all re-

ceivers, each RC thread sends unicast messages directly to

exactly one peer receiver by the SEND operation. IBRMP

will implement RDMA WRITE operation for the message

retransmission in the future.

All RC threads on the sender side share one receive

queue in their QPs. InfiniBand Shared Receive Queue (SRQ)

allows sharing of receive buffers across multiple connections

while maintaining good performance. This feature provides

a scalable buffer management and the ability to handle a

growing number of clients in an efficient manner for IBRMP.

Maintaining one RC thread for each receiver, however,

would put too much burden on the sender side as the number

of receivers increases. On the other hand, having only one

RC thread which monitors all QPs for all receivers could

also become overloaded. We provide a dynamic RC thread

approach to solve this problem. A single RC thread services

a limited number of receivers. We create the RC thread

dynamically and assign that number of receivers to one RC

thread before creating a new RC thread. This number can be

controlled by the users calling our IBRMP library. Because

users may have their own threads, and may want better

control over the allocation of IBRMP library threads, the

sender does not automatically create as many RC threads as

the number of CPU cores available, nor does it automatically

bind each RC thread to each core.

B. IBRMP message format and type

In IBRMP, the message formats and types are similar

to those in VCMTP[8]. There are three types of messages

transferred between sender and receiver: an ACK message,

a request message, and a response message. The ACK

81

message is used for flow control on both sides. The request

message and response message are totally different from

ACK messages. The request messages are sent from the

receiver side to the sender side. The response messages are

sent from the sender side to the receiver side. Each message

consists of a message header and a message payload, as

shown in Fig. 3. Based on the different types of request

message or response message, the length of the message

payload may vary.

In the message header, the File ID indicates the unique

ID belonging to the current transferring file. It is assigned

by the sender and is used to uniquely identify each file sent.

The fd field indicates the opened file descriptor of current

transferring file. It is used to locate the corresponding file

information on the sender side. The Sequence Number field

indicates the start position of the data block within the file

specified by the File ID field. Also, this field is used to detect

message loss at the receiver side. The Length field indicates

the number of bytes in the message payload. The Message

Type field indicates the type of current message.

B.1 Messages Sent by Sender Node

Each time a new file transmission request arrives, its

multicast thread multicasts a BOF (Begin of File) message

which contains fundamental information about that file, and

then multicasts all data blocks of this file. After multicasting

a file, the multicast thread starts a timer and then notifies

the coordinator thread, which notifies the RC thread to

send an EOF (End of File) message to all its receivers.

Therefore, even though a receiver may miss a multicast

BOF and all multicast DATA messages of a file, it will

receive the EOF message on its reliable connection and

ask for retransmission of the BOF and all DATA messages.

When the timer expires, the sender closes the corresponding

file and releases all relevant resources. After this time, any

retransmission requests for this file will not be processed.

1) BOF: A file’s multicast BOF message is always trans-

ferred before any of its DATA messages. It notifies a receiver

about the basic information for a file, including the total

length and the file name. A retransmission requested BOF

contains the same information but is transferred via RC.

2) DATA: This message contains the actual data of a file.

The Sequence Number field in message header specifies the

starting byte position of the data within the file.

Figure. 3: Request and Response Message Header

3) EOF: After the multicast thread finishes multicasting

a file, it sends an EOF message with the Length field set

to the total bytes of the file. By doing so, each receiver

can check file integrity and send corresponding request

messages if necessary without waiting for the retransmitted

BOF message. The EOF message is sent on each reliable

connection to guarantee delivery.

4) FILE TIMEOUT: On the sender side, if files were

kept open indefinitely waiting for retransmission requests,

subsequent file transmissions could be delayed due to re-

source limitations. Therefore, opened files must eventually

be closed. We set an upper time limit for each opened

file in order to close it. Accordingly, if a sender receives

retransmission requests related to previously closed files,

it will send this FILE TIMEOUT message to the receiver.

Also, closing a file after a period of time can guarantee

robustness for receivers[8]. It gives much more time for

slow receivers to get a whole file. The timeout mechanism

is explained in subsection E.

B.2 Messages Sent by Receiver Node
On the receiver side, anytime a message received is not the

one the receiver expects, a corresponding request message

will be sent via RC back to the sender. The checking and

processing logic of a received message is listed in Table I.

1) BOF REQUEST: If a receiver detects a multicast BOF

loss, it sends a BOF REQUEST message to the sender. This

could happen if the receiver starts receiving DATA messages

or an EOF message of a new file without a previous BOF

message for that file.

2) DATA REQUEST: If the receiver detects one or more

DATA messages missing, it sends this request to the sender.

This could happen if the receiver receives a DATA mes-

sage which has a noncontiguous Sequence Number when

compared to the Sequence Number plus Length from the

previously received DATA message. In such a request mes-

sage, the Sequence Number field is used to specify the first

missing byte, and the Length field is used to specify the

number of missing bytes. For example, if a receiver receives

a DATA message with Sequence Number 500 and Length

TABLE I: Receiver’s Logic Checking and Processing of The First Received Message
of a File

Message of a new
file received at
first

Receiver’s actions

Multicast BOF
Notify user-level application that a new file is
coming with its file information in BOF message

Multicast DATA

BOF of the new file was lost. Sends
BOF REQUEST message to the sender,
and sends DATA REQUEST message to the
sender if necessary

EOF
BOF message and all DATA messages were lost,
sends BOF REQUEST and DATA REQUEST
to ask for the retransmission of the whole file

82

100, and then it receives a DATA message with Sequence

Number 1000, it can determine that 400 bytes were lost

and send a request message for data retransmission with a

Sequence Number field of 600, and a Length field of 400.

3) TRANSFER DONE: If the receiver finishes receiving

a file, including all data and the EOF, it sends this message

to the sender to report completion.

C. Flow Control And ACK Implosion

On RC, if there is no receive WR posted, any message sent

by the other side will be retried a few times or forever based

on the value negotiated at the beginning of the connection

establishment. This retry occupies network and hardware

resources and impacts transmission performance. In order to

prevent sender and receivers from running out of available

work requests, flow control must be applied.

A sender or receiver can only send response messages or

request messages if it has available credits. The credit is the

number of outstanding messages a sender or a receiver can

send simultaneously without waiting for any confirmation.

If credit is 0, any further posted WR should be put into a

waitlist, waiting to be processed when credit is available

again by receiving an ACK message, which is used to

confirm a successful reception and processing of a request

or response message. It gives the peer side corresponding

credits to send further messages. Sending an ACK message

doesn’t require any credit.

Unlike a request message or response message, an ACK

message can be designed as a 0 byte message, The imme-

diate data field is used to acknowledge relevant message

reception. On either side, sending an ACK message for each

received request message or response message may improve

the real-time performance of transportation, which means

the credit can be restored quickly and the next message

can be sent in time. However, a large number of ACK

messages sent simultaneously may become an issue that

impacts performance. Therefore, instead of sending an ACK

for each received message, IBRMP batches the information

that should be acknowledged in order to prevent possible

ACK implosion, and then sends an “accumulated” ACK,

which confirms all previously batched information.

D. Ghost Receivers

As illustrated before, an EOF message is sent to each

receiver via the reliable connection in order to guarantee that

no receiver would miss a whole file. Also, sending an EOF

via the reliable connection can guarantee that no receiver

would be hanging forever. If EOF were only sent via the

multicast link, there is a possibility that a receiver may miss

the last few DATA messages as well as the multicast EOF

message, causing the receiver to wait forever, expecting new

multicast messages because it doesn’t know the multicast

transmission is finished.

Although sending EOF message via RC can prevent these

situations, it cannot prevent ghost receivers. That is, if a

receiver joins the multicast group after the EOF has been

sent, it will not realize it has missed the whole file because

the EOF sending has finished before it joins the group.

This situation is shown in Fig. 4. Initially receiver 1 and

2 are receiving data in the multicast group (label 1).

After sending an EOF message, the sender waits for the

completion notification from each receiver side, and these

two receivers may be working with data retransmission.

Then receiver 3 (label 2) joins the multicast group (label

3). To the sender side, there is one more receiver now

in the multicast group, so the sender has to wait for all

completion messages from all receivers before reporting

file transmission status. However, the last joined receiver

(receiver 3 in this case) didn’t receive the EOF message

which was sent before it joined, so it will not ask for any data

retransmission or send a completion message to the sender.

Therefore, even though other receivers (receiver 1 and 2 in

this case) are finished, the sender cannot report transmission

status until the file timeout. This “ghost receiver” blocks

the sender from reporting transmission status before the file

timeout.

To tackle this problem, the sender has to know all its

“valid” receivers. Therefore, the sender can take a snap-

shot of the current multicast group (label 4 in Fig. 4)

before sending the EOF message. This snapshot records all

receivers of the current multicast group when the sender

sends EOF messages. By doing so, if a receiver joins the

multicast group after the start of EOF message sending, it

has no impact on the sender because it is not in the snapshot.

The sender can report any status change in time, and the

newly joined receiver is just waiting for the subsequent

transmission of the new files.

E. Timeout Mechanism

Unlike previous work[5][6][10][11], the IBRMP timeout

is not related to each sent message, since IBRMP doesn’t

have to maintain status for each message. Also a large num-

ber of timers add extra overhead and would bring potential

race conditions. Instead, the IBRMP timeout mechanism is

Figure. 4: Ghost Receiver Situation

83

related with the whole file. Also, since this timeout mecha-

nism aims to guarantee robustness of receivers, it gives slow

receivers much more time to ask for data retransmission.

Due to system resource limitations, opened files should

be closed after a period of time in order to let new files

transfer. If a file is closed, data in that file is no longer

available, so any following retransmission requests related

with that file would trigger the FILE TIMEOUT message,

which is sent back to the receiver. However, if there are

many retransmission requests related with the same expired

file, sending a FILE TIMEOUT message for each request is

redundant. Furthermore, the TIMEOUT message requires a

credit. Therefore, sending such a message for each expired

request would slow down the DATA retransmission.

In IBRMP, we selectively send the FILE TIMEOUT

message back to receivers via the reliable connection. This

selective sending mechanism can guarantee that if requests

from a receiver are no longer valid, that receiver will get a

FILE TIMEOUT message only once. Also, this mechanism

can minimize overhead, and save credits as much as possible

by not sending FILE TIMEOUT messages to a receiver if it

determines that receiver will get such a notification by other

means.

On the sender side, the combination of the File ID field

and the fd field in message header is used to determine

whether a file expires or not. As illustrated before, File ID

is the value which identifies a file uniquely. This value is

incremented as each new file opened. The fd field is the file

descriptor returned by the open() system call. There may be

no upper limit for the File ID, but there is an upper limit

for the number of opened files. Therefore, the complexity of

locating a file is O(1) by using the combination of these two

fields. Each time a sender multicasts messages or unicasts

messages, it sets the fd field in the message header to the fd

of current file. Each time a receiver requests retransmission,

it fills the fd field with the same value sent from the sender.

According to the fd field in the request message, the sender

side checks relevant file information. If that file is expired,

but the last File ID related with this fd matches the File ID

field in the request message, the FILE TIMEOUT message

will be sent to the receiver side. If not, there is no need

to send such a message. Similarly, if there is a new file

opened with the same fd, which means the new File ID is

not identical to the one in the request message, there is also

no need to send a FILE TIMEOUT message, because the

new file’s BOF or DATA or EOF message will arrive at the

receiver side and notify the receiver that the previous file is

expired.

For instance, initially file A is opened and is being sent

to receivers, and assume the fd is 3 and File ID is 5. Tuple

〈fd, File ID, last File ID〉 is used to specify file information.

In this case, file A’s tuple is 〈3, 5, x〉 in which x means it

is the first time fd 3 is used. If file A expires, we modify

this tuple to 〈3, -1, 5〉. If a request message with tuple 〈3,

5〉 is received, the sender side will send a FILE TIMEOUT

message to the receiver, but if a request with 〈3, 4〉 comes,

the sender side ignores such a request message. Then, file B

is opened with the same fd 3, and File ID is 6. Now the tuple

is 〈3, 6, 5〉. If a request with tuple 〈3, 5〉 is received, the

sender side ignores such a request since any message with

File ID 6 will notify the receiver that the file with File ID

5 is expired.

IV. PERFORMANCE EVALUATION

Tests were performed on a cluster with six platforms:

two equipped with Mellanox[19] Fourteen Data Rate (FDR)

CAs; others equipped with Mellanox[19] Quad Data Rate

(QDR) CAs. Platforms with FDR MT27500 CAs consist

of twin 4-core Intel Xeon 2.4GHz Sandy Bridge CPU

and 64GB RAM. Two platforms with Mellanox[19] QDR

MT26428 CAs consist of twin 6-core Intel Xeon 2.93GHz

Westmere CPU and 64GB RAM. The other two platforms

with Mellanox[19] QDR MT26428 CAs consist of twin 6-

core Intel 2.93GHz CPU and 6GB RAM. All CAs utilize

2048-byte MTUs, and all platforms are running OFED 3.5-

2[18][20] on Scientific Linux 6.3 with kernel version 2.6.32.

All platforms are connected via a Mellanox SX6036 switch.

Firstly we compare IBRMP with another data distribution

approach which only uses RC to disseminate data among a

group of receivers. In this RC version there is one sending

agent thread for each receiver. Each sending agent has its

own private RC connection and buffer pool, and has no

interaction with other sending agents. Each agent tries to

keep 32 messages simultaneously in transit. At the start of

transmission, each receiver posts 32 receive buffers, and each

sending agent posts 32 send messages to its peer receiving

side. Each time a receiver receives a message, it sends an

explicit ACK back to its sending agent, thereby giving that

agent a credit to send a new message. There is only one

physical CA on the sender shared by all connections to

receivers.

For all our tests we transfer “pseudo” files because data

is sent memory-to-memory with no file system involvement.

In the first test, we distribute one 64 Gibi (Gi) bytes

of data from the sender to groups of one through five

receivers. Fig. 5a illustrates this comparison. When there

is only one receiver, the approach which uses only RC

to distribute data is slightly faster than IBRMP due to

the additional retransmission request/response messages and

BOF/EOF messages in IBRMP. However, as the number

of receivers increases, the approach which uses only RC

has to send the same message several times, once for each

receiver. As shown by the dashed line in Fig. 5a, the time

using only RC to distribute 64Gi bytes of data increases

rapidly as the number of receivers increases. For instance,

with 5 receivers, the time to transfer 64Gi bytes is 108

seconds because the same data is sent five times. On the

other hand, when IBRMP distributes data, most bytes are

84

(a) Distributing 64Gi bytes of data (as 1
“pseudo” file)

(b) Distributing 5Gi bytes of data (as 100
“pseudo” files)

(c) Distributing 5Gi bytes of data (as 100
“pseudo” files)

Figure. 5: IBRMP performance in transferring large amount of data and various congestion conditions

multicast only once regardless of the number of receivers, as

shown by the solid line in Fig. 5a. This scalability is due to

InfiniBand multicasting, which duplicates data as needed at

adapters and/or switches, thereby reducing communication

traffic and minimizing overhead on the sender side. The

time to distribute 64Gi bytes of data by using IBRMP is

a constant 22.75 seconds, even as the number of receivers

increases. Compared to the approach which only uses RC,

the improvement with IBRMP is proportional to the number

of receivers – with 5 receivers, IBRMP is about 4 times

faster.

Fig. 5b compares the transmission time between IBRMP

and the RC version during the second test, when 100

“pseudo” files are disseminated from the sender to the same

group of receivers simultaneously. Each file is 50 MebiBytes

(MiB), for a total of around 5GibiBytes (GiB). In both tests,

the RC version has to send the same data several times,

which increases the traffic on the sender’s CA, which in

turn results in inefficient data transmission. IBRMP, by its

use of multicast, illustrates its stability and scalability in

distributing multiple files.

Normally, multicast datagrams get lost when the receiver

is not ready to receive them or due to network congestion. In

our testing environment, more than 98% of data are received

on the multicast link, which means only a few multicast data

messages are lost.

Since the observed loss on the multicast link is small

during normal operation, we simulated various network loss

environments due to congestion by intentionally dropping

multicast messages randomly on the receivers. This forces

more messages to be sent back to the sender side to request

data retransmission, and consequently more data messages

to be sent via RC to each requesting receiver. Therefore,

the IBRMP performance is degraded. Fig. 5c shows the

total time to transfer the 100 “pseudo” files simultaneously

under different network loss environments caused by con-

gestion. The label “original” on the x axis indicates no

simulated network loss is injected, which is our original

testing environment. As the network loss rate increases,

IBRMP takes more time to disseminate data because more

data are retransmitted via RC. At a network loss rate of 90%

with five receivers, it takes about 11.7 seconds for IBRMP

to disseminate these 100 files, compared to the 8 seconds

by the approach which only uses RC in our original testing

environment (Fig. 5b). Since our test program intentionally

drops multicast packets on the receivers, dropped packets

are actually received twice. Therefore, the elapsed time in

this test (11.7 seconds) is about equal to the sum of the

times (11.6 seconds) both approaches take in the original

environment.

We also compared our IBRMP with the MPI Bcast opera-

tion implemented in Open MPI[21]. Fig. 6 compares IBRMP

with Open MPI 1.6.5 in two tests. In the first test, 64Gi bytes

of data are distributed. In the second test, we measured the

time that a two byte message is distributed to a group of

receivers. Both IBRMP and MPI Bcast are able to provide

low latency service. In addition, IBRMP shows its efficiency

and scalability in large amount of data transmission.

V. CONCLUSION

Unreliable InfiniBand multicast cannot by itself meet the

increasing need to distribute data reliably among multiple

clusters in data centers and other HPC fields because it is

based on unreliable communication, though it can provide

efficient and scalable data distribution. In order to bridge

the gap between reliable data distribution and unreliable

InfiniBand multicast, this paper has described the design,

implementation, and performance of IBRMP, a reliable

Figure. 6: Comparison between IBRMP and MPI Bcast

85

multicast protocol for InfiniBand. IBRMP is provided as

a library built on top of OFED, so it can be integrated

with OFED. It fully utilizes the advantages of InfiniBand

multicast, and guarantees reliable data distribution across an

InfiniBand Fabric. In order to minimize run-time resource

utilization, IBRMP uses InfiniBand features such as Shared

Receive Queues, and gives users control over the number

and affinity of sender retransmission threads.

IBRMP uses flow control and ACK batching to prevent

possible ACK implosion. It also prevents “ghost receivers”

which could delay the notification of transfer completion

from IBRMP to a user-level application, because “ghost

receivers” generally don’t know the transmission status of a

current multicast group. Also, IBRMP implements a timeout

mechanism to release system resources periodically, and to

guarantee robustness for slow receivers. In addition, the

selective sending of FILE TIMEOUT messages guarantees

that one is sent only if necessary, reducing overhead and

saving resources for possible data retransmission.

Our performance evaluation shows that, compared to

an approach which only uses RC, the improvement with

IBRMP is proportional to the number of receivers. Because

InfiniBand multiplexing duplicates messages at switches

instead of at the sender, it reduces communication traffic

and overhead at the sender. Therefore, IBRMP benefits from

this efficiency. It is able to provide low latency service, and

is scalable to a large number of receivers. In the future,

we plan to add more receiver nodes and additional switches

into our testing environment in order to demonstrate IBRMP

performance in a larger, more complex topology.

ACKNOWLEDGMENT

The authors would like to thank our funding agency. This

research is supported in part by National Science Foundation

grant OCI-1127228.

REFERENCES

[1] Infiniband Trade Association, “Infiniband Architecture Spec-
ification Volume 1, Release 1.2.1,” Nov. 2007.

[2] Top500 SuperComputers, “http://www.top500.org/.”
[3] Internet Data Distribution,

“http://www.unidata.ucar.edu/software/idd/.”
[4] Local Data Manager, “http://www.unidata.ucar.edu/software/ldm/.”

[5] D. Towsley, J. Kurose, and S. Pingali, “A Comparison of
Sender-Initiated and Receive-Initiated Reiable Multicast Pro-
tocols,” in IEEE Journal on Selected Areas in Communica-
tions, Vol 15, No.3, April, 1997.

[6] B. N. Levine and J. Garcia-Luna-Aceves, “A Comparison of
Reiable Multicast Protocols,” in Multimedia Sytems, Vol 6,
1998.

[7] M. den Burger and T. kielmann, “Collective Receiver-Initiated
Multicast for Grid Applications,” in IEEE Transactions on
Parallel and Distributed Systems, Vol 22, No.2, Feb. 2011.

[8] J. Li, M. Veeraraghavan, S. Emmerson, and R. D. Russell,
“VCMTP: A Reliable Message Multicast Transport Protocol
for Virtual Circuits,” in preparation.

[9] J. M. Byers, M. Luby, and M. Mitzenmacher, “A Digital
Fountain Approach to Asynchronous Reliable Multicast,” in

IEEE Journal On Selected Areas In Communications, Vol. 20,
No. 8, Oct. 2002.

[10] S. Floyd and et al., “A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing,” in
Proc. ACM SIGCOMM ’95, 1995.

[11] S. Paul, K. K. Sabnani, J. Lin, and S. Bhattacharyya, “Reliable
Multicast Transport Protocol (RMTP),” in IEEE Journal on
Selected Areas in Communications, Vol 15, No.3, Apr. 1997.

[12] B. Rajagopalan, “Reliability and Scaling Issues in Multicast
Communication,” in Proceedings of ACM SIGCOMM ’92,
Oct. 1992, pp. 188-198.

[13] B. Cohen, “Incentives Build Robustness in BitTorrent,” in
Proc. First Workshop Economics of Peer-to-Peer Systems,
June 2003.

[14] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and
A. Mohr, “Chainsaw: Eliminating Trees from Overlay Mul-
ticast,” in Proc. Fourth Int’l Workshop Peer-to-Peer Systems
(IPTPS ’05), Feb. 2005.

[15] J. Liu, A. R. Mamidala, and D. K. Panda, “Fast and Scalable
MPI-Level Broadcast using InfiniBand’s Hardware Multicast
Support,” in Proceedings of the 18th International Parallel
and Distributed Processing Symposium, 2004.

[16] T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-
time MPI Broadcast Algorithm for large-scale InfiniBand
Clusters with Multicast,” in Proceedings of the 21st Interna-
tional Parallel and Distributed Processing Symposium, 2007.

[17] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia,
“A Remote Direct Memory Access Protocol Specification,”
RFC 5040, Oct. 2007. [Online]. Available: http://www.ietf.
org/rfc/rfc5040.txt

[18] OpenFabrics Enterprise Distribution, “High performance
server and storage connectivity software for field-
proven RDMA and Transport Offload hardware solutions,”
2008. [Online]. Available: www.mellanox.com/pdf/products/
software/OFED PB 1.pdf

[19] Mellanox Technologies, “http://www.mellanox.com.”
[20] OpenFabrics Alliance, “http://www.openfabrics.org.”
[21] Open MPI: Open Source High Performance Computing,

“http://http://www.open-mpi.org/.”

86

