
A GENERAL-PURPOSE API FOR IWARP AND INFINIBAND

Robert D. Russell
University of New Hampshire InterOperability Laboratory

121 Technology Drive, Suite 2
Durham, NH 03824-4716

rdr@iol.unh.edu
(603) 862-3774

ABSTRACT

Remote Direct Memory Access (RDMA) allows data to
be transferred over a network directly from the mem-
ory of one computer to the memory of another computer
without CPU intervention. There are two major types
of RDMA hardware on the market today: InfiniBand,
and RDMA over IP, also known as iWARP. This hard-
ware is supported by open software that was developed
by the OpenFabrics Alliance (OFA) and that is known as
the OpenFabrics Enterprise Distribution (OFED) stack.
This stack provides a common interface to both types of
RDMA hardware, but does not itself provide a general-
purpose API that would be convenient to most network
programmers. Rather, it supplies the tools by which such
APIs can be constructed.

The Extended Sockets API (ES-API) is a specification
published by the Open Group that defines extensions to
the traditional socket API which include two major new
features necessary to exploit the advantages of RDMA
hardware and the OFED stack: asynchronous I/O and
memory registration.

The UNH-EXS interface is a multi-threaded imple-
mentation of the ES-API plus additional extensions,
which enables programmers to utilize RDMA hardware
via the OFED stack in a convenient, relatively familiar
manner. The UNH-EXS interface is implemented entirely
in user space on the Linux operating system. This pro-
vides easy porting, modification and adoption of UNH-
EXS, since it requires no changes to existing Linux ker-
nels. We present results on the performance of some
benchmark applications using the UNH-EXS interface on
both iWARP and InfiniBand hardware.

KEY WORDS

iWARP, InfiniBand, Remote Direct Memory Access
(RDMA), Extended Sockets (EXS).

1 Introduction

1.1 Remote Direct Memory Access

Remote Direct Memory Access(RDMA) is a technol-
ogy that allows data to be transferred over a network di-
rectly from the memory of one computer to the memory
of another without CPU intervention. There are two ma-
jor types of RDMA hardware available today: InfiniBand
[1], and RDMA over IP [2], also known as iWARP (In-
ternet Wide-Area RDMA Protocol) [3, 4, 5]. In this paper,
unless otherwise stated, the term RDMA applies to both.

The 10 Gigabit/second Ethernet (10GigEthernet) stan-
dard allows IP networks to achieve high transfer rates;
however, without offloading onto specializedNetwork In-
terface Cards(NICs), TCP/IP is not sufficient to make
use of the entire 10GigEthernet bandwidth. This is due
to data copying, packet processing and interrupt handling
on the CPUs at each end of a TCP/IP connection. In a
traditional TCP/IP network stack, an interrupt occurs for
every packet sent and received, data is copied at least once
in each host computer’s memory (between user space and
the kernel’s TCP/IP buffers), and the CPU is responsible
for processing multiple nested packet headers for all pro-
tocol levels in all incoming and outgoing packets.

One type of RDMA hardware that can be used to elim-
inate these inefficiencies is iWARP. The entire iWARP,
TCP and IP protocol suites are offloaded from the CPU
onto theRDMA Network Interface Card(RNIC). This
enables applications utilizing RNICs to have lower CPU
usage than those utilizing standard NICs, and to achieve
throughput close to the full capacity of 10GigEthernet.

1.2 OFED Stack

The OpenFabrics Alliance(OFA) [6] provides open-
source software to interface with RDMA hardware of

both types. This software has an active development com-
munity and is now included in Linux kernel distributions.
It provides an abstraction layer called theCommunication
Manager Abstraction(CMA), along with a verbs layer
that is used to perform data transfers over RDMA hard-
ware. This collection of software is referred to as the
OpenFabrics Enterprise Distribution(OFED) stack [7].
This software runs in both user and kernel space, and on
both the Linux and Windows operating systems.

This software stack is intentionally not designed as a
conventional API. Rather, it is a set of functions, called
“verbs”, and data structures that can be utilized to build
various APIs. Several versions already exist for the MPI
API, for example [8, 9]. These verbs and data structures
are not oriented toward user applications, because they
require knowledge of the internal workings of RDMA
hardware and its interactions with the OFED stack. This
form of programming is very unfamiliar to most pro-
grammers and is not at all similar to the conventional
sockets programming used by many network programs.
It therefore seems desirable to provide a more familiar,
general-purpose API on top of the OFED verbs layer that
would make it easier to write general network programs
that could nevertheless take advantage of the features pro-
vided by the OFED stack and RDMA hardware. This
general-purpose API would coexist with more specialized
APIs, such as MPI.

1.3 The ES-API

The Extended Sockets API(ES-API) [10] is a speci-
fication published by the Open Group [11] that defines
extensions to the traditional socket API in order to pro-
vide improved efficiency in network programming. It
contains two major new features: asynchronous I/O and
memory registration. These extensions can be a useful
method for efficient, high-level access to the OFED stack
and RDMA.

The UNH-EXS interface is a multi-threaded imple-
mentation of the ES-API that also provides some addi-
tional API facilities.

2 Design of UNH-EXS

Part of the OFED stack is a user-space library that al-
lows user-space programs to use its verbs and data struc-
tures to interface directly with RDMA hardware. We de-
cided to implement UNH-EXS entirely in user-space as
a thin layer between application programs and the OFED
verbs, as shown in Figure 1. Working entirely in user
space rather than kernel space makes it much easier to
implement and debug software, and it increases the porta-
bility of the resulting code. However, this introduces a

user space user application program
UNH EXS library
OFED user library

kernel space OFED kernel modules

iWARP driver IB driver

hardware iWARP RNIC InfiniBand HCA
10Gig Ethernet InfiniBand Fabric

Figure 1. Layering of EXS, OFED, iWARP
and InfiniBand

significant difference between the UNH-EXS interface
and the ES-API standard [10], because the ES-API was
intended to be integrated into the operating system ker-
nel. Thus the design of ES-API anticipates modifications
to the existing kernel I/O interface in order to reuse a
large number of existing OS functions for RDMA access.
Some examples are – socket, bind, listen, close, getsock-
name, and getpeername.

The ES-API also supplies many new functions to be
used in place of or in addition to existing socket func-
tions. This is necessary when the number or types of pa-
rameters of existing functions have to be changed to ac-
commodate the expanded requirements of asynchronous
operation and registered memory. Some examples are
exsconnect, exsaccept, exssend, and exsrecv.

standard
sockets

UNH-EXS origin

accept exs_accept ES-APIstandard
bind exs_bind UNH-IOLaddition
close exs_close UNH-IOLaddition

connect exs_connect ES-APIstandard
fcntl exs_fcntl UNH-IOLaddition

getsockname exs_getsockname UNH-IOLaddition
getpeername exs_getpeername UNH-IOLaddition

exs_init ES-APIstandard
listen exs_listen UNH-IOLaddition

poll exs_poll ES-APIstandard
recv exs_recv ES-APIstandard

exs_recv_offset UNH-IOLaddition
send exs_send ES-APIstandard

sendfile exs_sendfile ES-APIstandard
exs_send_offset UNH-IOLaddition

socket exs_socket UNH-IOL addition

Figure 2. Functions in UNH-EXS

Most ES-API functions, new and old, are based on the

2

use of afile descriptor(fd) to identify a network con-
nection. These fds are used in UNIX as an index into a
process-specific table in the kernel that points to all the
control information about the file. User-level code has
only limited access to this information, and cannot add
the types of new information necessary to implement the
EXS functionality. The ES-API expects this to be dealt
with by modifications to the operating system kernel. But
because UNH-EXS is implemented entirely in user space,
with no changes to the kernel, it must provide, in addition
to all new EXS-API functions, its own equivalent type of
a file descriptor and its own versions of all standard func-
tions that can be applied to RDMA sockets, as listed in
Figure 2. In addition, UNH-EXS added some new func-
tions to provide additional capabilities, as discussed in
section 4 and in an earlier paper[12].

3 Implementing EXS functions on top of
the OFED stack

3.1 Advertisements and Acknowledg-
ments

All socket communication requires a sender and a re-
ceiver, and EXS provides the two corresponding func-
tions: exssend and exsrecv. The underlying RDMA
transfer operations are not as straightforward, due to the
requirements of memory registration on both ends of the
connection and other information needed by OFED verbs.
Therefore, one side of a connection has to “advertise” to
the other side the memory it wishes to use in a transfer be-
fore the actual transfer can occur, and the EXS interface
must match up advertisements from the remote side with
requests on the local side before it can initiate an actual
RDMA transfer.

In the UNH-EXS implementation, the recipient of a
data transfer always controls the RDMA transfer, a deci-
sion that was based on our prior experience with iSCSI
[13, 14, 15] and with the use of iSER [16] in conjunc-
tion with iSCSI over RDMA [17]. The EXS implemen-
tation translates an exssend into an RDMA “send” oper-
ation that sends a short advertisement containing the size
and the starting address of the data block to be sent, and
a memory registration “handle” that gives the receiving
side permission to transfer the block of data directly from
the sender’s registered memory.

The EXS implementation of exsrecv attempts to
match it with a previously received advertisement from
the sending side, and waits (asynchronously) if neces-
sary until such an advertisement is received. When a
match is found, the receiving side’s EXS implementa-
tion issues (asynchronously) an RDMA “readrequest”

operation that includes all the information from the ad-
vertisement plus the corresponding information from the
exsrecv. This allows the RDMA hardware on both sides
to cooperate in “pulling” the data from the memory of the
sending machine directly into the memory of the receiv-
ing machine without any copying or CPU intervention.

Alternative designs, such as having the sender always
“push” the data to the receiver by using the RDMA
“write” operation, were rejected because the current de-
sign maps better onto the asymmetric RDMA instructions
provided by iWARP RDMA hardware, and because the
current design means the memory is being changed only
on the machine controlling the transfer.

3.2 Credit-based Flow Control

Because an exssend transfers user data from the send-
ing user’s memory directly into receiving user’s memory,
no additional buffer memory needs to be provided by the
EXS implementation, the OFED stack or the operating
system on either end.

However, an advertisement must be assembled in
small buffers within the sending side EXS implementa-
tion, and received into small “untagged” buffers within
the receiving side EXS. Advertisements are “unsolicited”
– they can be sent at any time without prior warning to the
receiver – and the implementation must have previously
provided buffers to receive these unsolicited messages or
the RDMA hardware will cause a fatal error. To deal with
this, we have implemented a simple form of credit-based
flow control to ensure that a sender will not send an ad-
vertisement unless it knows in advance that a receiver has
a buffer ready to accept it.

Each side of a connection maintains two internal credit
values: “sendcredits” is the number of advertisements it
is allowed to send to the other side, and “recvcredits”
is the number of advertisements it is prepared to receive
from the other side. When an EXS connection is first
established, the EXS interfaces on both sides negotiate
the initial values of these numbers. Prior to connection
establishment, the user application can set the values to
use in a negotiation with the exsfcntl function.

Sending an advertisement requires that the sender
have an unused sendcredit; if not, it must wait (asyn-
chronously) until one becomes available before send-
ing the advertisement. Receiving an advertisement re-
duces the receiver’s unused recvcredits. Both num-
bers are increased once the actual data transfer finishes,
and this is indicated to the receiver’s EXS interface by
the OFED stack when the RDMA readrequest operation
completes. However, there is no corresponding comple-
tion notification given by the RDMA hardware on the
sender side when the actual RDMA data transfer com-

3

pletes. Therefore, the receiver’s EXS interface must also
send a short unsolicited “acknowledgment” message back
to the sender at the completion of a data transfer. This ac-
knowledgment conveys to the sending EXS interface the
completion status of the transfer, allowing it to increment
its sendcredits for this connection and to post the com-
pletion event to the sending application.

4 Additional Features of UNH-EXS

4.1 Immediate Data

As described in section 3, data transfers in EXS ac-
tually require several RDMA operations: one to send
an unsolicited advertisement, one to start an RDMA
readrequest, and one to send an unsolicited acknowledg-
ment. (A fourth, hidden RDMA “readresponse” oper-
ation is performed entirely by the RNIC on the sending
side in response to the RDMA readrequest operation per-
formed by the receiver’s RNIC.)

When the amount of data in a transfer is small, the total
transfer time will be dominated by the overhead needed to
execute all these operations and to transfer the extra un-
solicited messages. Therefore, the UNH-EXS interface
enables users to utilize the exsfcntl function to set a new
“small packetmax size” parameter on a socket prior to
establishing a connection on that socket. Whenever the
user sends an amount of data not exceeding that limit, the
UNH-EXS interface will actually send the user’s data as
an “immediate” part of the unsolicited advertisement it-
self. Since this data is registered on the user side, the
RDMA hardware will still transfer it directly from the
sending user’s memory without any additional copying
or buffering on the sending side.

When the receiving side EXS matches this advertise-
ment with a local exsrecv, it just copies this immedi-
ate data into the memory area provided by the user in
the exsrecv, avoiding the RDMA readrequest and the
hidden RDMA readresponse operations, but introducing
a previously unneeded data copy on the receiving side
(only). The effect of this on performance is demonstrated
in section 5.

4.2 Persistent Sends

Normally every byte sent in an exssend is “con-
sumed” when it is received by an exsrecv. However, the
EXS socket interface to RDMA also makes possible new
ways to share remote memory that are similar to the “one-
sided” communications in MPI [18].

One side of the EXS socket can send a block of reg-
istered memory over that socket by calling the normal
exssend and supplying an “EXSPERSISTENT” flag.

What this means is that the other side of the EXS socket
can repeatedly receive this same memory block – the
sent data is not “consumed” as it normally would be
for a socket send, but remains available for subsequent
exsrecvs by the remote side of the EXS socket connec-
tion without subsequent corresponding exssends. Effec-
tively this opens up the memory on the sending side of an
EXS socket to repeated inspection by a remote receiver
using the normal exsrecv operation. In such a situa-
tion, the sender is completely passive, since the remote
receiver simply “pulls” the data (or parts of it) across
the connection directly from the memory of the sender
to the memory of the receiver without any CPU interven-
tion on the sender’s side. There is, in fact, no indication
whatsoever to the sender that this has even happened, and
the sender incurs no CPU overhead whatsoever when this
happens.

There are many interesting uses for such a feature. For
example, suppose the sender is an ongoing simulation of
a physical phenomenon, and the receiver is a remote dis-
play station that wishes to dynamically display the cur-
rent state of the simulation in real-time. This can provide
invaluable real-time feedback to the experimenter. Effec-
tively the receiver can “sample” the results at its leisure,
without in any way interfering with the ongoing simula-
tion. In particular, there is no need to synchronize the
display with the simulation. The simulation updates its
memory whenever it is ready; the remote display receives
that memory directly into its own memory whenever it is
ready. For many display applications it does not matter
if the transferred data is not completely consistent – on a
display screen the inconsistency may be noticed as a few
“bad pixels” or as a slightly skewed boundary pattern be-
tween two regions in the simulation grid. If the receiver
were concerned about internal consistency of the data, a
simple checksumming technique could be used with min-
imum disruption to the simulation.

This technique can also be of great benefit for remote
debugging. The area of memory sent by the sender in
a persistent fashion should contain the variables pertinent
to the ongoing simulation. The receiver will have to know
the layout of these variables in that memory, but that can
be arranged at compile-time or sent dynamically over the
same EXS socket prior to the actual start of the simula-
tion run. The receiver can then display the current value
of the variables in real-time, under the control of the ex-
perimenter at the display console, while the simulation is
running and without interfering with the simulation. The
receiver could also keep a trace of these variables dur-
ing the simulation, which can be useful if the simulation
eventually crashes or otherwise becomes unstable.

This technique can also be of value when an applica-
tion wishes to explicitly control the synchronization of a

4

simulation and a remote display station (for example) by
exchanging short control messages over a separate com-
munications channel (i.e., another socket) that may or
may not need to use RDMA.

We can also consider a completely different type of ap-
plication that wishes to have a transaction exchange (i.e.,
request – response) between the communication partners.
One way to implement this would be to have two EXS
sockets between the partners, with each partner sending
persistently on one of the sockets and receiving on the
other. The sender would actually send only once, and
would thereafter modify the data in its memory only –
the receiver would pick up the latest values whenever it
did a receive.

There is a need to synchronize changes to the data on
each side, and there are several possible ways to do this.
The most obvious would be for each sending side to send
a short message to the receiving side whenever it has fin-
ished changing its data, and to not change the data again
until it receives a short message back from the receiver in-
dicating both that the receiver’s reply data is ready to read
and that the sender could once again change its data. This
adds the overhead of the extra short message exchange.

EXS offers another way to do this synchronization, us-
ing a variant of the persistent send described above. In
this variant the user gives a flag to the send that requests
persistent data as well as an asynchronous event when-
ever the receiver actually reads this persistent data. When
it gets this event, the sender can infer that its data in mem-
ory can safely be changed. However, to give the receiver
time to utilize the data it just read in order to generate a
response, the sender can not infer from just that one event
that it is also time to read the response from the other
side. A simple solution to this is to use a double-buffering
setup, with one persistent send connection per buffer. The
event generated when the receiver reads buffer A now in-
dicates that the sender can change the data in buffer A (as
before), and can also safely read the data in buffer B. An
example of the performance of this technique is given in
Figure 9 in section 5.

4.3 Persistent Receives

It is also possible for a receiver to issue a “persistent”
receive on an EXS socket. In this case, the same exsrecv
will be used to satisfy all subsequent exssends from the
remote side of the EXS socket. In symmetry with the per-
sistent send, the side issuing the persistent receive is not
synchronized with or made aware of the matching remote
sends from the other side of the EXS socket. Rather the
application on the receiving side just uses the current val-
ues in its local memory whenever it needs them. The re-
mote sender will update them asynchronously via RDMA

using a normal exssend.
A persistent receive is inherently more “dangerous”

than a persistent send, because it allows the remote side to
change local memory without notification to or synchro-
nization with the receiver. This implies that the receiver
must be totally impervious to inconsistencies in the mem-
ory block, must not itself be changing these values, or
must be explicitly synchronizing the remote sends via a
second communications channel.

Note that both sides of an EXS socket connection can-
not be persistent, since one of the sides must be an active
(non-persistent) driver of the passive (persistent) side.

4.4 Offsets

The EXS socket interface has been extended by
the introduction of additional exssendoffset() and
exsrecv offset() calls that are defined to take an extra
parameter, which is the offset from the start of the re-
mote “persistent memory” at which the transfer should
start. The effect is to enable the active side to selectively
transfer appropriate subparts of the persistent memory for
purposes of inspection or modification.

5 Performance Results

We first present results obtained by “blasting” data
from a user on one workstation to a user on another work-
station using RDMA interfaces. Each workstation con-
tains four 64-bit Intel 2.66 GHz x8664 processors with
4 Gbytes of memory, a NetEffect 10 Gbps RNIC, and a
Mellanox 8 Gbps Lion Mini SDR HCA, both mounted in
PCI-E 8X slots. The matching interfaces are connected
back-to-back with CX4 (copper) cables. The operating
system was Red Hat Enterprise Linux 5.1, kernel 2.6.18-
53 SMP, and the OFED stack was version 1.4.

In the throughput graphs, user-level throughput in
Megabits per second (Mbps) is plotted on the y-axis. The
x-axis is the user payload size in bytes sent by the applica-
tion on one machine using one exssend and received by
the application on the other machine using one exsrecv.
The scale on both axes is logarithmic because of the large
ranges spanned.

The graph in Figure 3 shows the user throughput
when using the iWARP interface. The solid line in the
graph shows the throughput with normal sends, the long-
dash line with immediate sends, and the short-dash line
with persistent sends. Transfers containing up to around
100,000 bytes produce slightly better throughput when
sent using immediate or persistent data. Note that the
maximum user-level throughput actually achieved (with
all three types of send) is 9.325 Gbps for very large pack-
ets. This was achieved using 1500 byte Ethernet frames

5

that allow for a maximum theoretical user payload of
9.363 Gbps which takes into account all required head-
ers and CRCs. The data for this graph was taken on the
receiving side. The results for the sending side are essen-
tially identical.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level EXS payload in bytes

iWARP normal, max 9325 Mbps
iWARP immediate, max 9309 Mbps
iWARP persistent, max 9333 Mbps

Figure 3. iWARP user payload throughput
in Mbps

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level EXS payload in bytes

iWARP normal
iWARP immediate
iWARP persistent

Figure 4. iWARP Percentage Utilization of
one CPU during throughput tests

The graph in Figure 4 shows the percentage of CPU
time used by the receiving side during the runs that pro-
duced Figure 3. The differences in CPU utilization are
considerable. When using normal sends, the percent CPU
utilization never exceeds 30%. When the size of a trans-
fer reaches 100,000 bytes, the CPU utilization drops to
10%, and after 1,000,000 bytes it is essentially 0%. The
CPU utilization curve for persistent sends is similar. But
when the user-level data is transferred entirely as immedi-
ate data attached to advertisements, the percent CPU uti-
lization never drops below 40%, and as the transfer size
increases beyond 1,000,000 bytes, it rapidly increases to

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level EXS payload in bytes

IB normal b1, max 7849 Mbps
IB normal b2, max 7859 Mbps
IB normal b4, max 7857 Mbps
IB normal b8, max 7858 Mbps

Figure 5. InfiniBand throughput in Mbps us-
ing simultaneous transactions

more than 90%. This is entirely attributable to the data
copy from the advertisement’s buffer to the user’s mem-
ory area on the receiving side.

Results on the sending side are similar, except that the
CPU utilization for persistent sends is always 0%! This
is because the sender issues only a single exssend with
the EXSPERSISTENT flag set, and this single exssend
matches all the exsrecvs issued by the receiver.

Figure 5 demonstrates throughput when using multi-
ple asynchronous transmissions in EXS, this time over
InfiniBand hardware. In this graph there are lines illus-
trating 4 situations, all using normal sends. These situ-
ations are: only 1 transfer “in-progress” at any time; 2
transfers simultaneously “in-progress” at the same time;
4 simultaneous “in-progress” transfers, and 8 simultane-
ous “in-progress” transfers. As can be seen, throughput
increases as more simultaneous transfers are performed,
although the size of the increase diminishes after intro-
ducing the second simultaneous transfer (i.e., using clas-
sic “double buffering”).

Figure 6 compares the throughput performance of nor-
mal iWARP sends and normal InfiniBand sends. The In-
finiBand throughput is slightly higher for payload sizes
less than about 40,000 bytes; above that, iWARP perfor-
mance is slightly better. Note that for large transfers, the
maximum observed throughput for iWARP is 9325 Mbps,
whereas for InfiniBand it is only 7849 Mbps. This is be-
cause the Ethernet link supports a maximum data transfer
rate of 10 Gbps, whereas the maximum data transfer rate
of an InfiniBand channel is 8 Gbps.

Figure 7 shows a similar throughput comparison when
all the data is attached as immediate data in an advertise-
ment. This graph shows essentially no difference in per-
formance between the two technologies. Figure 8 shows
the comparison when persistent sends are used. Here

6

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level EXS payload in bytes

IB normal, max 7849 Mbps
iWARP normal, max 9325 Mbps

Figure 6. iWARP vs InfiniBand throughput
in Mbps using normal EXS sends

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level EXS payload in bytes

IB immediate, max 7853 Mbps
iWARP immediate, max 9309 Mbps

Figure 7. iWARP vs InfiniBand throughput
in Mbps using EXS immediate data

the iWARP NIC consistently outperforms the InfiniBand
HCA by a small amount.

The table in Figure 9 shows the throughput achieved in
the double-buffered transaction exchange discussed at the
end of section 4.2 when compared with the simple “blast”
using persistent sends just shown in Figure 8. The lower
transaction performance is caused by the added synchro-
nization. The payload is measured in only one direction,
although in the transaction situation a similar payload is
simultaneously traveling in the opposite direction.

The table in Figure 10 compares the one-way latency
in microseconds using normal, immediate and persistent
sends for both technologies. For this test, a classic “ping”
user application was modified to use EXS functions. One-
way latency is calculated by averaging the round-trip
times for several million “ping” messages and then di-
viding by two.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level EXS payload in bytes

IB persistent, max 7853 Mbps
iWARP persistent, max 9333 Mbps

Figure 8. iWARP vs InfiniBand throughput
in Mbps for persistent EXS sends

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level EXS payload in bytes

iWARP transaction, max 4647 Mbps
iWARP persistent, max 9333 Mbps

Figure 9. iWARP throughput in Mbps for
transaction and persistent EXS sends

For normal sends Figure 10 shows a one-way latency
of 33 microseconds for both iWARP and InfiniBand. For
sends that attach all their data as immediate data in the ad-
vertisement, iWARP one-way latency of 17 microseconds
is somewhat better than the InfiniBand latency of about
19 microseconds. For persistent sends, iWARP one-way
latency of 10 microseconds is much better than the Infini-
Band latency of about 15 microseconds.

There are significant observable differences among
the results of the various types of sends, regardless of
the technology. Immediate sends have only about half
the one-way latency of normal sends for both technolo-
gies. This is not surprising, since for such small amounts
of data (1, 10 or 100 bytes), overhead accounts for the
vast majority of the total time, and attaching data to
the advertisement eliminates entirely the readrequest,
readresponse actions of the iWARP RNIC. Persistent

7

Payload Normal Immediate Persistent
bytes iW IB iW IB iW IB

1 33 33 17 19 10 16
10 33 33 17 19 10 15

100 34 33 17 18 10 15

Figure 10. iWARP vs InfiniBand one-way la-
tency in microseconds

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level payload in bytes

TCP with Nagle, max 4661 Mbps
TCP no Nagle, max 4727 Mbps

EXS max 9342 Mbps

Figure 11. iWARP vs TCP throughput in
Mbps

sends have only 30% of the one-way latency of normal
sends on iWARP, 45% on InfiniBand. This reduction
in latency is due to the omission of both the advertise-
ment and the acknowledgment messages that normally
surround the RDMA readrequest, readresponse actions.
With further tuning and optimization we should be able
to reduce these latency times.

Figure 11 compares the throughput of iWARP and
TCP over the same 10GigEthernet NICs (TCP cannot use
the RDMA feature of those NICs). Lines are plotted for
TCP performance with and without the Nagle algorithm,
as it makes an obvious difference when “blasting” small
packets. Both TCP throughputs are better for payloads
up to about 6,000 bytes, where they achieve their maxi-
mum of around 4700 Mbps, about the same as for EXS
at that payload. For larger payloads, both TCP through-
puts gradually decline, whereas EXS throughput contin-
ues to rise to almost full available bandwidth. The poor
performance of EXS for small payload sizes is due to
the fact that the initial EXS implementation reflects the
message-oriented nature of the underlying RDMA pro-
tocols, which are more like TCP without the Nagle al-
gorithm and are closer to SOCKSEQPACKET seman-
tics. TCP implements SOCKSTREAM semantics and

 0

 20

 40

 60

 80

 100

 120

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

User-level payload in bytes

TCP with Nagle percent cpu usage
TCP no Nagle percent cpu usage

EXS percent cpu usage

Figure 12. iWARP vs TCP cpu utilization

thus performs better when “blasting” small packets, with
or without the Nagle algorithm. We are working to im-
prove this performance of our EXS implementation.

Figure 12 compares the cpu utilization for these same
runs, and shows that EXS uses significantly less of the
cpu than TCP for all payload sizes. Furthermore, EXS
cpu utilization, never more than 43%, decreases to essen-
tially zero for the largest payloads, whereas for both types
of TCP, several payloads sizes use 100% of the CPU.

6 Conclusion

The EXS interface provides convenient, high-level ac-
cess to RDMA network hardware. It is much easier to
use than the OFED verbs, and is much more familiar
to programmers who have used conventional sockets. It
also enables new methods of using RDMA communi-
cations by providing persistent receives and sends. Re-
sults shown in this paper demonstrate that application
programs using the UNH-EXS implementation can attain
reasonable performance with both types of RDMA net-
work hardware, iWARP and InfiniBand.

References

[1] InfiniBand Trade Association. InfiniBand Architec-
ture Specification version 1.2.1, November 2007.

[2] A. Romanow, J. Mogul, T. Talpey, and S. Bailey.
Remote Direct Memory Access (RDMA) over IP
Problem Statement. RFC 4297 (Informational), De-
cember 2005.

[3] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Car-
rier. Marker PDU Aligned Framing for TCP Specifi-
cation. RFC 5044 (Standards Track), October 2007.

8

[4] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Di-
rect Data Placement over Reliable Transports. RFC
5041 (Standards Track), October 2007.

[5] R. Recio, B. Metzler, P. Culley, J. Hilland, and
D. Garcia. A Remote Direct Memory Access Pro-
tocol Specification. RFC 5040 (Standards Track),
October 2007.

[6] OpenFabrics Alliance. http://www.openfabrics.org,
2009.

[7] OpenFabrics Enterprise Distribution.
http://www.openfabrics.org/, 2009.

[8] Open MPI: Open Source High Performance Com-
puting. http://www.open-mpi.org, 2009.

[9] MVAPICH: MPI over InfiniBand and iWARP.
http://mvapich.cse.ohio-state.edu, 2009.

[10] Interconnect Software Consortium in association
with the Open Group. Extended Sockets API (ES-
API) Issue 1.0, January 2005.

[11] Open Group. http://www.opengroup.org, 2009.

[12] R.D. Russell. The Extended Sockets Interface for
Accessing RDMA Hardware. In T.F. Gonzalez, ed-
itor, Proceedings of the 20th IASTED International
Conference on Parallel and Distributed Computing
and Systems (PDCS 2008), pages 279–284, Novem-
ber 2008.

[13] R.D. Russell. iSCSI: Past, Present, Future. InPro-
ceedings of the 2nd JST CREST Workshop on Ad-
vanced Storage Systems, pages 121–148, December
2005.

[14] Y. Shastry, S. Klotz, and R.D. Russell. Evaluating
the Effect of iSCSI Protocol Parameters on Perfor-
mance. In T. Fahringer and M.H. Hamza, editors,
Proceedings of the IASTED International Confer-
ence on Parallel and Distributed Computing and
Networks (PDCN 2005), pages 159–166, February
2005.

[15] A. Chadda, A.A. Palekar, R.D. Russell, and
N. Ganapathy. Design, Implementation, and Per-
formance Analysis of the iSCSI Protocol for SCSI
over TCP/IP. InInternetworking 2003 International
Conference, June 2003.

[16] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur,
H. Shah, and P. Thaler. Internet Small Computer
System Interface (iSCSI) Extensions for Remote
Direct Memory Access (RDMA). RFC 5046 (Stan-
dards Track), October 2007.

[17] E. Burns and R.D. Russell. Implementation and
Evaluation of iSCSI over RDMA. InProceedings of
the 5th International Workshop on Storage Network
Architecture and Parallel I/O (SNAPI’08), Septem-
ber 2008.

[18] MPI Forum. MPI: A Message-Passing Inter-
face Standard, June 2008. http://www.mpi-
forum.org/docs/mpi21-report.pdf.

9

