
DESIGN AND IMPLEMENTATION OF A SOFTWARE
PROTOTYPE FOR STORAGE AREA NETWORK PROTOCOL EVALUATION

ASHISH PALEKAR
ANSHUL CHADDA

NARENDRAN GANAPATHY
ROBERT RUSSELL

InterOperability Laboratory
University of New Hampshire

Durham, New Hampshire 03824, USA

E-mail: apalekar@brocade.com,fachadda,ng3,rdrg@iol.unh.edu

ABSTRACT

In the past few years, storage area networks have
gained popularity as a cost-effective means of providing
enterprise-wide access to massive amounts of storage. A
key idea in this development has been the replacement of
the data bus that connects a host computer to a storage de-
vice with a high-speed data network. The first step in this
direction was the replacement of the traditional SCSI bus
with a Fibre Channel network that transported SCSI com-
mands and data over greater distances at Gigabit per second
speeds. A more recent development has been the emer-
gence of protocols intended to transport SCSI commands
and data over TCP/IP networks, and hence, over the global
Internet.

This paper describes the design and implementation of a
software prototype for evaluating several different storage
area network transport protocols. A testbed has been de-
veloped that enables Linux PCs playing the roles of SCSI
targets and SCSI initiators to interact over different trans-
port networks using different protocols. The first imple-
mentation is for three different configurations: SCSI over
Fibre Channel, SCSI over TCP/IP using the SCSI Encap-
sulation Protocol (SEP), and SCSI over TCP/IP using the
iSCSI protocol currently under development by IETF.

Keywords:storage area networks, network protocols, In-
ternet SCSI, iSCSI.

1 INTRODUCTION

The widespread adoption of the World Wide Web and
e-commerce has created a huge demand for vast storage
repositories that provide access 24 hours a day, 7 days a
week. This demand has overwhelmed traditional storage
mechanisms, and has prompted the development of promis-
ing new technologies.

One of these ideas is the “Storage Area Network”, or
SAN [1]. The basic observation leading to development
of the SAN concept is the following. Traditionally stor-
age devices were connected to local computers via buses,
such as that defined by the Small Computer Systems Inter-
face, or SCSI. These buses had severe limitations on the
distance between the accessing host and the accessed stor-
age device (on the order of 25 meters maximum), on the
number of devices which could be attached to the bus (7 or
15), and on the speed with which data could be transferred.
They also caused access bottlenecks because only the host
computer connected to the bus could access the storage. In
order to access the storage, other computers would have to
first contact that host computer and get it to act as a server
on their behalf. On such a server, the speed at which the
server accesses data from the storage device is comparable
to, or lower than, the speed at which the server is able to
transmit this data to other computers. Such a server could
easily get swamped, especially as the amount of storage it
was serving grew.

Therefore, the key idea behind SAN development is to
replace this traditional data bus with a high-speed data net-
work, such that the storage device is directly attached to
that network and can interact with multiple host comput-
ers via that network. This not only eliminates the server
bottleneck described above, but with the advent of gigabit-
per-second and higher network capacity, actually improves
the data transfer rates and decreases the costs.

The first technology to build on this idea was Fibre Chan-
nel [2], which uses a gigabit-per-second link to carry SCSI
commands and data over distances up to 10 km. This
technology requires special hardware adapters on both the
client hosts and the target storage devices, and new fiber-
optic cabling that meets the Fibre Channel specifications.

In the past year or two, several proposals have been made
to leverage the huge existing network infrastructure, which

� ✁ �✂

✄ ✁☎ � �✆ ✝ � ✁ �✂ ✞ ✄ ✁☎�✟ ☎

✄ ✝ ✠☛✡☞ ✁✌ ✍✎ ✎ ☞ ✏

�✆ ☎

✆ ✁☎ ✑✒ ☎

✂ ✎ ✓☞ ✡ ✎ ☞ ✓ ☎ ✡✔ ✓✔ ✕✔ ✏

✒ ✡ ✝✗✖ ☞ ✡
✘☞ ✓✙ ✔ ✡ ✚ ✁ ✍✡ ✛

FIGURE 1: Different ways to map SCSI onto a network

is largely built on Ethernet and which forms the basis for
the global Internet. As discussed in the next section, there
are many ways to do this, but they all involve designing a
new protocol that would encapsulate SCSI commands and
data for transport over existing protocols, such as IP or TCP
or UDP.

In order to evaluate these various protocol proposals, we
designed a software testbed that provides both SCSI tar-
gets and SCSI initiators that can be interconnected by var-
ious networking technologies, primarily 1000 BaseT Eth-
ernet. Using this design, we have implemented a num-
ber of the proposed SAN transport protocols in an attempt
to evaluate their strengths and weaknesses, especially the
completeness of their specifications, and to measure their
performance under various conditions. Of course, the ulti-
mate goal for most companies interested in SANs requires
a hardware implementation of the protocols, so measure-
ments of our software implementations would only allow
relative, not absolute, comparisons. However, we designed
the testbed to enable us to incorporate hardware implemen-
tations of both initiator and target components as they be-
come available.

2 BACKGROUND

Figure 1 shows in schematic form some of the various
ways that have been proposed to map SCSI onto a net-
work. Fibre Channel is the lowest-level technology be-
cause it simply replaces the SCSI bus with its own network
fiber and replaces the SCSI Host Bus Adapter (HBA) with
its own driver.

The Scheduled Transfer Protocol (STP) [3] is a proposal
being developed by the ANSI X3T11.1 working group for
a protocol that would allow zero-copy message exchange
over an unrouted network. SCSI on STP (SST) is another
proposed standard being developed by the ANSI X3T10
working group. This defines a mapping of SCSI com-

Host

Initiator

PC

Host

Initiator

PC

Host

Initiator

PC

Target

PC

Emulator
Target

Device

Target

Device

Target

Device

Network SCSI Bus

Network

SCSI Bus

Part a: Typical SCSI interconnect

Part b: Future SAN hardware

Part c: Target Emulator in software

FIGURE 2: Steps in the Evolution of SANs and our SAN Target Emulator

mands, data transfers and responses on SST sequences that
in turn are carried by STP over a network.

Both the SCSI Encapsulation Protocol (SEP) [4] and the
iSCSI Protocol [5] define an encapsulation of SCSI com-
mands and data into protocol data units (PDUs) that are
transported over the existing TCP/IP protocol stack. Thus
the existing well-understood network infrastructure defined
by TCP/IP is not reinvented, as with Fibre Channel and
STP.

The Storage over IP (SoIP) [6] proposed by NISHAN
systems is a family of protocols to carry storage traffic over
IP. One of these, iFCP, runs over TCP, but another, mFCP,
runs over the existing UDP protocol. This is different from
SEP and iSCSI because it does not depend on the TCP pro-
tocol to provide a reliable transport service, but instead uti-
lizes the unreliable UDP protocol. mFCP actually encap-
sulates the Fibre Channel protocol for delivery by UDP, so
that lost UDP packets will be detected and recovered from
by Fibre Channel. The expectation is that UDP provides
faster message-oriented delivery and is cheaper to imple-
ment in hardware than the fairly complex stream-oriented
TCP.

We decided to concentrate our initial design efforts on
SEP because it was relatively simple and would enable us
to develop and test the basic architecture quickly. Our sec-
ond step was then to utilize this architecture to implement
one of the early drafts of iSCSI, since that is actually going
to become an international standard, whereas SEP is not.

3 DESIGN

Figure 2 illustrates the high-level approach we took to-
ward our design. Part a of that figure shows a typical SCSI
bus interconnection between a host and a device. Part b of

User Space

Kernel Space

SD
disks

Block device

Lower Level

SR
cdrom/dvd
Block device

ST
tapes

Char device

SG
generic

Char device
Upper Level

Mid Level

SCSI Unifying Layer
This level is responsible for the conversion of command requests
into SCSI requests. This level then hands off these requests to the

low level driver.

Host Bus
Adapter Drivers

Drivers for
Non-SCSI buses

FIGURE 3: Layers in the SCSI subsystem initiator

the figure shows the SCSI bus replaced by a network. In
such a configuration, special hardware on both the host and
the device would be necessary to map the SCSI command
and data sequences onto the network protocol. Except for
Fibre Channel, such hardware is not yet widely available,
and drivers are not yet written for Linux. However, that sit-
uation is changing rapidly. Part c of the figure shows how
our software target emulator would be interposed as an in-
terface between the network and the target device so that
no new hardware would be required. Our software com-
ponents on the host and on the target emulator use SEP or
iSCSI to encapsulate SCSI commands and data and then
transfer them over the network. The target emulator deliv-
ers these commands and data “down” to the attached SCSI
device using an ordinary SCSI bus, while the host compo-
nent delivers these commands and data “up” through the
host SCSI subsystem to the host application.

Figure 3 shows that the SCSI subsystem on an initia-
tor is traditionally divided into three layers: a upper-level
that provides a “read/write” interface (which is tradition-
ally used by a file system); a mid-level that converts the
reads and writes into general SCSI commands and data
transfer sequences; and a lower-level which is the driver
for the HBA to a specific SCSI device and which controls
the delivery of the SCSI commands and data through the
HBA over the SCSI bus to that device.

Figure 4 shows the internal organization of a typical
SCSI initiator and our software Target Emulator. This fig-
ure shows how, on the host, the 3 layers in the SCSI sub-
system (as illustrated in Figure 3) are situated in kernel
space below a traditional file system that in turn is ac-
cessed from user-space applications. The Front-End Ini-
tiator Driver (FEID) is the host software component that
encapsulates the SCSI commands and data and delivers
them to the TCP/IP subsystem for transport over the net-
work. We have to write one such component for each SCSI
transport protocol (SEP, iSCSI). Such a component for Fi-

bre Channel is already available with the Linux kernel as
a SCSI driver for the QLogic ISP 2x00 and the Interphase
IPH5526, among others.

On the target emulator, our software is divided into two
components, as shown in Figure 4. The lower-level compo-
nent is called the Front End Target Driver (FETD). There is
one such component for each SCSI transport protocol (SEP,
iSCSI), and all understanding of the protocol on the tar-
get resides entirely within this component. The upper-level
component is called the SCSI Target Mid-Level (STML)
and is independent of the protocol used in the FETD. The
primary purpose of the STML is to process SCSI com-
mands and to hand off the responses generated to the ap-
propriate FETDs. The STML is also responsible for SCSI
error handling and for maintaining SCSI state information.
In this sense, it represents an abstraction of all the common
functions that need to be performed by FETDs written for
different SCSI Transport Protocols. This layer enables the
design of the Target Emulator to be generic for all SCSI
Transport Protocols.

A key component in this design is the specification of
two interfaces, shown as API in the figure. One enables the
FETD to call STML functions to pass to the STML infor-
mation and data received over the network from the initia-
tor. The other interface enables data and status information
to flow in the other direction.

When commands and/or data are received from the ini-
tiator, the FETD unencapsulates them and delivers them to
the STML for processing. There are several different con-
figurations for implementing this processing, as discussed
in the next section. When data and responses flow in the
opposite direction, the STML passes the information on to
the appropriate FETD for encapsulation and transport over
the network to the initiator.

Part c of Figure 2 illustrates that the design of the Target
Emulator allows it to be used as a bridge to SCSI devices. It
could also be used as a bridge to non-SCSI devices, such as
IDE disks, by providing a SCSI to IDE translation function.
In fact, we are currently using it as a bridge between the
SEP and iSCSI protocols on a 1000BaseT network from
the host initiator and a Fibre Channel interconnect to the
target device.

Because some of our tools reside in the kernel and are
intended to be used to simulate and test a wide variety of
situations, an important component of the design of both
the Target FETDs and the Initiator FEIDs is the design of
an interface that allows them to be configured dynamically
and interactively, (i.e., without rebuilding and rebooting the
kernel or reloading a kernel module). Since SEP is a very
simple protocol, configuration on a SEP initiator is limited
to bringing SCSI devices up or down and assigning these
devices to target IP addresses and Logical Unit Numbers
(LUNs). However, iSCSI is a much more complex proto-
col which, in addition to having configuration requirements

USER SPACE

KERNEL SPACE

Generic SCSI Target
mid-level (STML)

Front-End Target
Driver (FETD)

SCSI Target Emulator

SCSI Target

SCSI Commands/Data

SCSI Responses/Data

User Space Application

File System

SCSI Initiator Upper
Level (SIUL)

Generic SCSI Initiator
mid-level (SIML)

Front-End Initiator
Driver (FEID)

SCSI Initiator

FIGURE 4: Internal components in the SCSI Initiator and SCSITarget

similar to those of SEP, also requires the dynamic negotia-
tion between initiator and target of dozens of iSCSI param-
eters. To deal with this we have developed an interface that
allows a user to interactively interrogate and modify these
parameters and to control their use during the iSCSI ne-
gotiation process. Each FEID and FETD will incorporate
interface functions that interact with user-level programs to
accomplish these management tasks, as discussed further
in section 4. There is one such interface for each FEID and
FETD.

4 IMPLEMENTATION

All our coding was done in C for the Linux operating
system, and is available at http://www.iol.unh.edu under
the terms of the GNU Copyleft agreement.

On the initiator side we have implemented two drivers
and have tested drivers for three transport protocols. The
drivers for the SEP and iSCSI draft 3 protocols both utilize
the existing Linux software TCP/IP stack to communicate
over an Alteon ACENIC 1000 BaseT Ethernet card. The
driver for the Fibre Channel protocol utilizes a QLogic Fi-
bre Channel HBA that communicates over a Gigabit Fibre
Channel link.

We have two separate implementations of the target-side

software: one that operates entirely in user space, called the
User Space Target Emulator (USTE), and one that operates
entirely in kernel space, called the Kernel Space Target Em-
ulator (KSTE). Both are organized into the two part struc-
ture described in the previous section, namely an FETD
and a target emulator. For the USTE we have implemented
the SEP FETD. For the KSTE we have implemented three
FETDs: one for SEP, one for iSCSI draft 3 and one for
Fibre Channel.

We have several reasons for wanting both a user-space
and kernel-space version of the target emulator. We im-
plemented the user-space version first because it was obvi-
ously easier to do, and this enabled us to easily refine our
design on the target side and debug the initiator side. Once
we had this up and working, we used it as a model that
made the task of creating a kernel version simpler. Hav-
ing both USTE and KSTE versions allows us to compare
the performance of the two to see if the user-space/kernel-
space difference actually produces performance differences
(it does, see the next section). In the longer term we expect
the kernel-space version to be the reference version, and
the user-space version to form the basis for tools to do con-
formance and interoperability testing. We also plan to do
stress testing of SCSI transport protocols implemented in
hardware.

Protocol KSTE USTE
SEP-9000 35 –
SEP-1500 21 19

iSCSI 19 –
FC 45 –

Table 1: Observed Data Transfer Rates in MBps on 1 Gbps
links

Both the USTE and the KSTE can be compiled into three
different configurations. The most basic is one in which the
SCSI commands are essentially ignored and data is simply
transferred between the FETD and host memory without
ever going to or from a real SCSI device. This configura-
tion allows us to debug and test an FETD and the transport
protocol it is utilizing without actually interacting withany
SCSI device. It also allows us to make performance mea-
surements of the transport protocol itself, for example, to
see how well it utilizes the available network bandwidth.
This target configuration makes it impossible to have a real
user-level application on the initiator side, since such an
application would expect to be accessing a real file system,
not random data.

In the second configuration, the USTE or KSTE transfers
data to and from a file in the host file system rather than
directly to and from a SCSI device. This allows us to debug
and test the SCSI Initiator software without actually having
a SCSI disk as the target. Because the target data is stored
in a file, it is easier to inspect and verify using standard
file system tools on the target than it would be if it were
actually stored on a raw disk. It also allows us to have
a fully functional initiator in which applications read and
write files to the target.

The third configuration is the “production” mode of op-
eration in which the USTE or KSTE actually reads and
writes data to a SCSI device.

As discussed in Section 3, an important part of our de-
sign was specification of an interactive interface that would
allow users to dynamically configure and control the pa-
rameters required by SEP and especially iSCSI. This in-
terface was implemented using the “/proc” file system in
Linux. This file system enables a user-level program to
read and write what looks like a file, but what is really a
direct communication channel to a kernel module. Both
our FEIDs and FETDs have functions in them to register
with the “/proc” file system and to satisfy read and write
requests. Among other possibilities, writes to a certain file
allow the user to define new parameter settings, and reads
from that file give the current settings back to the user.

5 CONCLUSIONS AND FUTURE WORK

This paper has described the design and implementation
of a software testbed that enables us to prototype and eval-

uate various storage area network protocols.

We have organized our software into a number of in-
teracting but independent modules for maximum flexibil-
ity. To date we have implemented versions for three pro-
tocols: SEP, iSCSI draft 3, and Fibre Channel. Table 1
shows a comparison of the observed data transfer rates for
these protocols on 1 Gbps links for both Ethernet and Fibre
Channel. This is the rate seen by a test application using
the “memory-only” configuration of the target emulators.

Table 1 contains two lines for the SEP implementation,
one labeled SEP-1500, the other labeled SEP-9000. The
Alteon Acenic Gigabit Ethernet card we are using for these
experiments provides an option that enables the sending
and receiving of ethernet frames having a payload of up
to 9000 bytes (Jumbo frames), instead of the standard limit
of 1500 bytes. The line labeled SEP-1500 shows that with
a 1500 byte payload the SEP implementation achieves a
transfer rate of 21 Megabytes per second (MBps), but by
increasing the payload to 9000 bytes the transfer rate in-
creases 66% to 35 MBps, as shown in the line labeled SEP-
9000. That such a significant improvement in bandwidth
utilization can be attributed solely to increasing the packet
size implies that there is a very high per packet overhead.
Work is currently underway to determine which compo-
nents of the protocol stack are the primary contributors to
this overhead, and to suggest ways to reduce it.

This table also illustrates that moving the SEP-1500 tar-
get emulator from user-space to kernel-space produces a
10% improvement in the observed transfer rate from 19
MBps to 21 MBps. We assume this is due to the extra con-
text switches and memory copying necessitated by the user-
space implementation, but work is underway to specifically
identify the exact cause.

Obviously the Fibre Channel protocol (labeled FC in Ta-
ble 1) provides the best results, since it utilizes a hardware
HBA on both the initiator and target. The SEP and iSCSI
protocols both utilize the standard software TCP/IP stack
provided in Linux.

Work is underway to upgrade the iSCSI implementation
from draft 3 [5] of the proposed standard to the latest draft,
currently draft 6 [7]. This involves a number of changes,
including differences in the PDU format, in login and pa-
rameter negotiation sequences, task management, and se-
curity considerations.

We are also instrumenting our implementations to obtain
more precise performance measurements of such important
metrics as bandwidth utilization, latency and cpu utiliza-
tion. We are interested in identifying the bottlenecks in the
design and/or implementation of both our software and the
proposed protocols, and in feeding this information back
into the standardization process.

Finally we are developing an extensive suite of tests for
conformance, interoperability, operability and stress test-
ing. To do this requires modifying our existing prototype

software so that it can “provoke” certain situations in order
to observe the responses of systems under test. Our inter-
active configuration interface greatly enhances our ability
to implement these tests, and we are planning to extend it
to other areas of the kernel, such as the TCP/IP stack and
the network drivers, in order to be able to create designated
test situations, such as dropped packets, bad checksums,
etc. We are designing these tests so they can be used on
the hardware implementations of iSCSI that are soon to be
released.

6 ACKNOWLEDGEMENTS

This work was supported in part by SUN Corporation
and EMC Corporation.

REFERENCES

[1] Ravi K. Khattar, Mark S. Murphy, Giulio J.
Tarella, and Kyell E. Nystrom. Intro-
duction to Storage Area Network, SAN.
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg
245470.pdf, August 1999.

[2] ANSI X2.269-1995.Information Technology, ’dpANS
Fibre Channel Protocol for SCSI (SCSI-FCP)’, 1995.

[3] dpANS T11.1/Project 1245-D/Rev 3.6.Information
Technology, ’Scheduled Transfer Protocol (ST)’, Jan-
uary 2000.

[4] Andrew Wilson. Internet Draft, ’The SCSI Encapsu-
lation Protocol’ (SEP). http://www.ietf.org/internet-
drafts/draft-wilson-sep-00.txt, May 2000.

[5] Julian Satran and et al.Internet Draft, ’iSCSI (In-
ternet SCSI)’. http://www.ietf.org/internet-drafts/draft-
ietf-ips-iSCSI-03.txt, January 2001.

[6] Nishan Systems. An Overview of
SoIP – Storage over Internet Protocol.
http://www.nishansystems.com/techlib/technical.html,
2000.

[7] Julian Satran and et al.Internet Draft, ’iSCSI (Internet
SCSI)’. http://www.haifa.il.ibm.com/satran/ips/draft-
ietf-ips-iSCSI-06.txt, January 2001.

