
EVALUATING THE EFFECT OF ISCSI PROTOCOL PARAMETERS ON
PERFORMANCE

Yamini Shastry, Steve Klotz
Medusa Labs

600 Center Ridge Drive, Suite 600
Austin, Texas 78753, USA

email:{yamini,steve}@medusalabs.com

Robert D. Russell
InterOperability Lab, Univ. of New Hampshire

121 Technology Drive, Suite 2
Durham, NH 03824, USA
email: rdr@iol.unh.edu

ABSTRACT
iSCSI is a new IETF standard protocol that makes it possi-
ble for a SCSI initiator (client) on one machine to exchange
SCSI commands and data with a SCSI target (server) on an-
other machine connected via a TCP/IP network. When an
initiator establishes a connection to a target, a large number
of standard parameters can be negotiated in order to cus-
tomize many aspects of that connection. Both the initiator
and target implementations can configure other parameters
outside the iSCSI standard that also customize their inter-
actions with the SCSI environment.

This paper reports the major results from an exten-
sive study of the effect of these parameters on iSCSI per-
formance. It also develops a linear relationship between a
number of them. We suggest settings that offer the best per-
formance in the situations tested, with the belief that these
settings offer the best available general guidance for con-
figuring iSCSI until results from testing in more complex
situations becomes available.

KEY WORDS
protocols, performance evaluation, storage area networks, iSCSI.

1 Introduction

The iSCSI protocol is a mapping of the SCSI remote invo-
cation procedure model [1] onto the TCP/IP protocol suite.
The iSCSI specifications have recently been approved as
an Internet Engineering Task Force (IETF) standard [2].
The strength of iSCSI stems from the fact that it builds
on well-established technologies like SCSI, TCP/IP and
Ethernet. Native SCSI, as used in direct attached stor-
age, is both a protocol and a physical transport. iSCSI
is a session-based protocol in which the transport is pro-
vided by TCP/IP. iSCSI uses a client-server architecture in
which the client is called the iSCSI initiator and the server
is called the iSCSI target. The design of the iSCSI protocol
is explained in [3]. An important part of that design is the
specification of a large number of operational parameters
which can be negotiated on a session by session basis.

A number of papers have discussed various aspects of
the performance of the iSCSI protocol [4][5][6][7]. How-
ever, of these only [7] seems to have looked at the effects
which tuning the various settings of the standard iSCSI pa-

rameters may have on performance. The others do not even
state what their iSCSI parameter settings were during their
tests.

This paper presents the major results from an in-depth
study of the iSCSI parameters defined in the standard [2].
Section 2 introduces and categorizes these parameters, as
well as some other parameters which are typically found
in iSCSI implementations. Section 3 discusses the perfor-
mance metrics used in our study, and section 4 describes
our test setup. Because they involve different parameters,
our results for read operations are found in section 5, while
those for write operations are found in section 6. Section
7 summarizes the conclusions and suggests some future
work.

 Multiple Multiple Multiple Multiple Physical
Applications LUNs Connections Connections

User

SCSI

iSCSI

Network

Stack

Figure 1. Multiplexing Single/Multiple connections/LUs

2 Parameters

Each iSCSI connection starts with alogin phase during
which the initiator and target may negotiate a large number
of standard parameters that can effect performance. Both
initiator and target may also independently define a number
of implementation-dependent parameters that effect perfor-
mance. This second set of parameters cannot be negotiated
during login, unlike the standard parameters.

Once the login phase is successfully completed,
iSCSI enters thefull feature phase, during which iSCSI
commands and data are exchanged over the established
iSCSI connections. The unit of transmission in iSCSI is
theProtocol Data Unit (PDU). Data transfer is performed
duringread commands, in which an initiator receives data
from a target, andwrite commands, in which data is sent
from initiator to target.

2.1 Parameters effecting all commands

• Header and Data Digests: A 32-bit Cyclic Redun-
dancy Check (CRC) may be added to the end of iSCSI
headers and/or iSCSI data payloads in order to catch
errors that are undetected by the weak checksum of
TCP. Although the CRC calculation was performed in
software for our tests, it had no effect on throughput
for small PDU sizes (8192 bytes or less), but moder-
ately decreased throughput for larger PDUs.

• DataPDUInOrder and DataSequenceInOrder:
These parameters may be negotiated in order to
restrict the order of data pdus within sequences, and
the order of the sequences themselves. We found
that these parameters had no measurable effect on
performance when used with our test targets. A more
sophisticated target using a storage device that could
control out-of-order operations in order to reduce its
processing time would need to be found and tested.

• MaxConnections: This gives the maximum number
of TCP connections allowed in a single session. If
this is negotiated to a value greater than 1, then a
further consideration not defined in the standard is
how these connections are mapped onto physical in-
terfaces. With only one physical interface, we found
that multiple connections per session had no effect on
throughput.

• Number of Logical Units: The number of Logical
Units (LUs) defined by a target can effect perfor-
mance, because a single connection may be used to
carry commands and data for multiple LUs. When
there are multiple connections in the session, there
can be different combinations for setting them up, as
shown in Figure 1. We found that multiple LUs had
no measurable effect on performance.

• Initiator connection scheduling: An important con-
sideration in implementing an initiator that allows
multiple connections per session is the design of al-
gorithms which decide how and when to map com-
mands onto connections. To date, only the Round
Robin and LU-assignment-to-connection algorithms
have been implemented in the UNH reference initia-
tor, and neither algorithm showed any performance
benefit over the other in our tests.

• Number of outstanding SCSI commands: Most
SCSI implementations permit an initiator to have
more than one SCSI command in progress simultane-
ously. The exact number is a non-negotiable property
of the iSCSI initiator. We found that it has a signifi-
cant impact on throughput.

• Number of sectors per command: Most SCSI disks
define a sector size of 512 bytes, and require I/O oper-
ations to be in multiples of a sector. The iSCSI initia-
tor is usually required to declare a limit on the number

of sectors in a single SCSI I/O operation. Increasing
the value of this parameter results in an improvement
in throughput.

2.2 Parameters effecting read commands

Three parameters that potentially could affect the perfor-
mance of an iSCSI read areMaxBurstLength (MBL), phase
collapse, and MaxRecvDataSegmentLength (MRDSL) of
the initiator.

On receiving a read command, the target sends the
requested data to the initiator. This data is split into se-
quences. Each sequence consists of one or more data-
in pdus. The total amount of read data sent in one
sequence must not exceed the negotiated value of the
MaxBurstLength. The total amount of data sent in all se-
quences must equal the amount of data requested in the
read command (the read command’sExpectedDataTrans-
ferLength). TheDataSegmentLength of a data-in pdu must
not exceedMRDSL of the initiator, and the total of all the
DataSegmentLengths of all the pdus in a sequence must not
exceed theMaxBurstLength.

MaxBurstLength has a significant impact on write
performance, as shown in section 7, but no impact on
read performance. This requires a bit of explanation. For
both reading and writing,MaxBurstLength determines the
length of a sequence of data-carrying pdus. However, the
notion of a sequence during a read is almost meaningless
in the iSCSI protocol, because the last data-in pdu at the
end of one input sequence can be immediately followed by
the first data-in pdu at the beginning of the next, with no
extra pdu exchanges in either direction, and no extra pro-
cessing on either side. By contrast, the end of a sequence of
data-out pdus sent by the initiator during writing requires
the transmission of an R2T pdu by the target back to the
initiator before the next data-out sequence can begin. This
extra interaction introduces extra overhead and delay dur-
ing a write that is completely missing from a read.

The target normally finishes a read command by send-
ing a separate SCSI response pdu containing the com-
mand’s status. However, when the status issuccess, a non-
negotiable option allows the target to use aphase collapse
in which it sets a bit in the final data-in pdu and omits the
SCSI response pdu.

2.3 Parameters effecting write commands

The performance of iSCSI writes depends on the following
negotiable iSCSI parameters:

• For unsolicited write data:FirstBurstLength, Immedi-
ateData (yes/no),InitialR2T (yes/no), andMaxRecv-
DataSegmentLength of the target;

• For solicited write data:MaxBurstLength, MaxOut-
standingR2T, andMaxRecvDataSegmentLengthof the
target.

The initiator sends a write command to the target
when it has data to be written to the target. The outgo-
ing data follows the write command on the same connec-
tion. After the data is written to target, the target sends a
response with the status of the write operation.

Data sent in a write command can either besolicited
or unsolicited. Use of unsolicited data is negotiable, and
can be sent as immediate data in the write command pdu
(whenImmediateData is Yes), or as separate data-out pdus
following the write pdu (whenInitialR2T is No), or both.
Solicited data follows any unsolicited data, and is sent by
an initiator only after receiving aReadyToTransfer (R2T)
pdu from the target. The total amount of solicited and un-
solicited data to be written is given by theExpectedData-
TransferLength (EDTL) field in the write command pdu.

Both solicited and unsolicited data is written in se-
quences containing one or more data-out pdus, and the
DataSegmentLength (DSL) of each data-out pdu must not
exceedMRDSL of the target. The total of immediate data
and all theDSLs of all pdus in an unsolicited data se-
quence is limited by the value of theFirstBurstLength pa-
rameter. The total amount of all theDSLs of all pdus in
a solicited data sequence is limited by the value of the
MaxBurstLength parameter.

When theMaxOutstandingR2T parameter is negoti-
ated to a value greater than one, the target can send that
number of R2Ts without waiting for any data-out pdus
from the initiator, and the initiator can then send that many
sequences of data-out pdus without waiting for further in-
put from the target.

3 Performance metrics

Performance metrics considered during our studies were
the percent CPU utilization, the command completion time
(a measure of latency), the average throughput on an
iSCSI connection, and the burst data rates on a command.
In this paper, we discuss only results related to average
throughput, which is the total number of application-level
bytes carried over an iSCSI connection divided by the to-
tal elapsed time taken by the application, as expressed in
Megabytes per second (MB/sec). Throughout this paper,
KB represents210 = 1, 024 bytes, and MB represents
220 = 1, 048, 576 bytes. (Increase all MB/sec numbers
in the paper by5% to get the equivalent value when MB
represents106 = 1, 000, 000 bytes.)

4 Testing

4.1 Test setup

Our test setup consists of an initiator and target connected
point-to-point via an analyzer, as shown in Figure 2. The
hardware for the initiator and target systems consisted of
2.66GHz Intel Pentium 4 processors with 512MB of RAM

and 32-bit PCI buses. Each processor had a 32-bit wide In-
tel Pro/1000 82450 gigabit (copper) ethernet adapter. The
analyzer was a 1.6GHz AMD Athlon with 256MB of RAM
and two Finisar GBE-0901 gigabit ethernet adapters that
were internally connected so that no delay was encountered
in the analyzer.

Some of the tests were repeated with an Intel Net-
Structure 470T gigabit ethernet switch inserted between the
initiator and target, but no difference in performance was
detected.

Although this test setup is very simple, performance
measured with it should form a baseline against which
performance on more complex network topologies can be
compared. Furthermore, our study should serve to guide
future performance studies by indicating which of the many
iSCSI parameters seem to be the most interesting to look at.

INITIATOR
(GIGE NIC)

TARGET
(GIGE NIC)

ANALYZER
GIGE INTERFACE

Figure 2. Test Setup

4.2 iSCSI components

The software consisted of the UNH-IOL iSCSI initiator and
target-emulator reference implementations [8], the Win-
dows initiator [9], and three other targets, which we refer
to as vendor-A target, vendor-B target and vendor-C target
because we cannot disclose the product names and details.

Except for tests involving the Windows initiator, the
Linux kernel 2.4.18-3 (Redhat 9 distribution) was installed
on the initiator. When using the UNH-IOL initiator, data
was read and written using raw devices in order to by-pass
buffer and file system caching. When using the UNH-
IOL target-emulator, which was also implemented on the
Linux kernel 2.4.18-3 Redhat 9 distribution, data was kept
in RAM (i.e., it was not written to an actual device) so that
the results would reflect the performance of the protocol
stacks, not that of a storage device.

4.3 Testing methodology

We used a Finisar Xgig iSCSI analyzer in order to mea-
sure throughput, data burst rate and command time. To-
tal elapsed time was measured as the difference between
the time at which the test program started generating the
first byte of data and the time at which the last byte of data
was confirmed to have been sent (received). The elapsed
time therefore includes all data transfers and all read and
write commands and responses at all levels of the proto-
col stack. For these tests we used custom programs de-

veloped at UNH and Medusa Labs to generate streams of
iSCSI read and write data. These were run as user programs
on the initiator machine, and in each run the test program
continuously read (wrote) 500 requests of one megabyte
each as fast as possible through the SCSI subsytem and out
over the iSCSI connection to the target device. Each data
point plotted in a graph in this paper was calculated as the
average of 10 runs with identical parameter settings. We
note that in most operating systems, all user-level requests
which go through the SCSI subsystem are reorganized into
one or more SCSI commands, the size of which bears little
relation to the original size of the user-level request, since
requests can be broken into smaller pieces or combined into
larger ones by the SCSI subsystem. Therefore, we do not
vary or plot the user-level request size, since tests results
based on the size of requests generated by an application
tool are usually meaningless, although they are often re-
ported in the literature when standard data generators are
used.

5 iSCSI read performance results

This section shows the effect on iSCSI read throughput of
the most important parameters discussed in section 2.

5.1 Effect of MaxRecvDataSegmentLength

To study the effect of MaxRecvDataSegmentLength
(MRDSL), the MaxBurstLength was kept constant at
128KB and theMRDSL value was varied from 512 bytes to
128KB. Figure 3 shows a quick 15% increase in throughput
as pdu size increases from 512 to 8192 bytes, after which
there is only a slight increase in throughput with increased
pdu size.

Effect of MRDSL on throughput

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100 110 120 130

MRDSL

T
h

ro
u

g
h

tp
u

t (
M

B
/S

ec
)

MBL=128KB

Figure 3. Effect of MRDSL on throughput

The number of data-in pdus generated by a read com-
mand is the command size divided byMRDSL. Hence, big-
gerMRDSL requires fewer data-in pdus, fewer data-in pdus
means fewer iSCSI packets and less overhead processing
time. The number of data-ins for each of the points plot-
ted in Figure 3 was verified with counters in the analyzer,

Effect of number of data-in PDUs on throughput

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200 220 240 260

#Data-in PDUs/command

T
h

ro
u

g
h

tp
u

t (
M

B
/S

ec
)

MBL=128KB

Figure 4. Effect of number of data-in pdus per command

and Figure 3 was re-plotted in Figure 4 using the number of
data-ins per command instead of the pdu sizes on the x axis.
Since this graph shows a nearly linear relation, the follow-
ing linear equation was developed by regression analysis:

t = A ∗ x + B (1)

where:
t = Time in milliseconds to transmit 1 MB of data
x = Number of data-in pdus per command
A = 0.014169577
B = 15.24598802

Figure 5 shows the observed values and the values
calculated with equation 1 for the time taken to transmit
one megabyte of data (i.e., the inverse of throughput) vs
the number of data-ins per command. The calculated val-
ues show a good linear fit to the actual values. The same
comparison was also performed using the Windows initia-
tor and the UNH target, and also showed a good fit.

This test was repeated using the UNH initiator against
vendor-A target, vendor-B target and vendor-C target. All
the graphs showed the same linear relationship between
MRDSL and transmission time per MB, but yielded differ-
ent coefficients for equation 1. This was because the tar-
get back-end processing time changed with the target and
therefore changed the throughput values.

5.2 Effect of number of sectors per com-
mand

Figure 6 shows that throughput increases as the number of
sectors per command increases. Increasing the number of
sectors which can be read per command means a corre-
sponding increase in the number of bytes of data that can
be transfered in a single command, which in turn means
fewer commands are required to transfer a fixed amount
of data. The number of sectors/command was increased
from 64 to 1024, which increases the expected command
size from 32KB to 512KB. The burst lengths and pdu sizes
were kept equal to the expected command size in order

Effect of number of Data-in PDUs on Time

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200 220 240 260

#Data-in PDUs/command

T
im

e(
m

ill
is

ec
/M

B
)

Observed time Calculated time

Figure 5. Observed and calculated values for time/MB

to have one response pdu per command pdu. The results
show that the throughput does not increase when the num-
ber of sectors/command is greater than 1024, because be-
yond 1024 sectors/command, the SCSI command size does
not increase with an increase in sectors/command. This
might be a Linux SCSI limitation.

Effect of num sectors/command on throughput

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500

num sectors/command

Th
ro

u
gh

p
ut

 (
M

B
/s

ec
)

Figure 6. Effect of number of sectors on throughput

6 iSCSI write performance results

This section shows the effect on iSCSI write throughput of
the most important parameters discussed in section 2.

6.1 Effect of burst lengths

Figure 7 shows that throughput increases with an increase
in burst lengths. Each line in Figure 7 represents a fixed
MRDSL value. TheFirstBurstLength was set equal to
MaxBurstLength. For each value ofMRDSL (in the range
512 bytes to 128KB), the values ofFirstBurstLength and
MaxBurstLength were increased over the same range. This
test was repeated for the four combinations ofInitialR2T
and ImmediateData, and the results were similar in all

cases. Figure 7 shows only the results forImmediate-
Data=Yes andInitialR2T=No.

Effect of burst lengths on throughput

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
FBL-MBL in KB

T
h

ro
u

g
h

p
u

t i
n

 M
B

/S
ec

MRDSL=0.5KB MRDSL=1KB MRDSL=2KB MRDSL=4KB
MRDSL=8KB MRDSL=32KB MRDSL=128

Figure 7. Effect of burst lengths on throughput

Figure 7 shows that for any pdu size, the through-
put rapidly increases with an increase in burst length up
to 32KB, after which the increase slows down. When
repeated with vendor-A and vendor-B targets, this test
showed a similar effect.

For any given pdu size, the number of data-outs sent
by the initiator in a command is unchanged, but increasing
the burst sizes causes more data-out pdus to be sent in a
single sequence, which means fewer R2Ts have to be sent
by the target to request the sequences from the initiator.
Fewer R2Ts means less time spent waiting for and process-
ing R2Ts, and therefore better bandwidth utilization. The
number of R2Ts for each point shown the Figure 7 was
calculated and the values were verified with counters in the
analyzer. Figure 8 is Figure 7 redrawn to show the effect
of the number of R2Ts per command on throughput, and
dramatically shows the degradation in throughput as this
number increases.

#R2T PDUs/Command Vs Throughput

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

#R2Ts/Command

T
h

ro
u

g
h

p
u

t

MRDSL=0.5KB MRDSL=1KB MRDSL=2KB MRDSL=4KB
MRDSL=8KB MRDSL=32KB MRDSL=128KB

Figure 8. Effect of Number of R2Ts on throughput

6.2 Effect of MaxRecvDataSegmentLength

To study the effect ofMRDSL, the burst lengths were kept
constant at 128KB and theMRDSL value was varied from
512 bytes to 128KB. TheImmediateData was set toyes
andInitialR2T was set tono. This setting was chosen so
that all data was sent either immediate or unsolicited, i.e.,
no R2Ts, and hence the variation in throughput was a pure
effect of the pdu size. The results were identical to those
for read commands shown in Figures 3 and 4.

From the data collected for all four combinations of
ImmediateData and InitialR2T, it was hypothesized that
throughput for write commands depends on the following
factors:

• Number of R2Ts per command
• Number of data-out pdus per command
• Number of Immediate data bytes per command
• Number of Unsolicited data bytes per command
• Number of Solicited data bytes per command

A regression analysis was used to develop a linear
equation between the inverse of throughput (i.e., the time
taken to transmit one megabyte of data), and the above-
mentioned factors based on the data from all combinations
of ImmediateData andInitialR2T. Equation 2 shows the re-
sult.

t = A∗x1+B ∗x2+C ∗x3+D ∗X4+E ∗x5+F (2)

where:
t = Time in milliseconds to transmit 1 MB of data
x1 = Number of R2Ts per command
x2 = Number of data-outs per command
x3 = Immediate data bytes(MB) per command
x4 = Unsolicited data bytes(MB) per command
x5 = Solicited data bytes(MB) per command
A = 1.82
B = 0.011
C = 115.29
D = 120.79
E = 87.72
F = 0

Figure 9 shows plots of the transmission time for one
megabyte of data versus the x1, x2, x3, x4 and x5 vari-
ables (which are not independent). Both the observed and
calculated values are shown in these figures. The calcu-
lated values show a good fit to the actual values. The same
tests were performed using the Windows initiator and the
UNH target. The results showed the same effect of pdu
size on throughput, and the throughput values calculated
using equation 2 were very close to the observed values.

As was done for reads, the same tests were repeated
using the UNH initiator against vendor-A target, vendor-
B target and vendor-C target. All the graphs showed the
linear relationship given by equation 2, but with different
coefficients calculated by a regression analysis in order to
account for the different target back-end processing times.

Final Linear Data-fit
ID=Yes, IR2T=No

0

50

100

150

200

250

300

0 50 100 150

#R2Ts/Command

T
im

e(
M

IL
L

I S
E

C
S

/M
B

)

Final Linear Data-fit
ID=Yes, IR2T=No

14.5

15

15.5

16

16.5

17

17.5

0 20 40 60 80 100 120 140

#Data-out PDUs/Command

T
im

e(
M

IL
L

I S
E

C
S

/M
B

)

Final Linear Data-fit
ID=Yes, IR2T=No

0

50

100

150

200

250

300

0 0.05 0.1 0.15

Solicited Data(MB)/Command

T
im

e(
M

IL
L

I S
E

C
S

/M
B

)

Final Linear Data-fit
ID=Yes, IR2T=No

14.5

15

15.5

16

16.5

17

17.5

0 0.05 0.1 0.15

 Immediate Data (MB)/Command

T
im

e(
M

IL
L

I S
E

C
S

/M
B

)

Final Linear Data-fit
ID=Yes, IR2T=No

0

50

100

150

200

250

300

0 0.05 0.1 0.15

Unsolicited Data (MB)/Command

T
im

e(
M

IL
L

I S
E

C
S

/M
B

)

MRDSL=1KB -> Y -ORIG
"MRDSL=1KB -> Y-CALC"

Figure 9. Observed values and calculated values for
time/MB

The graphs in Figure 9 show the values withImme-
diateData set toYes, InitialR2T set toNo, andMRDSL set
to 1024 bytes. All other combinations also show a close
match between the observed values and those calculated
from equation 2.

6.3 Effect of multiple outstanding R2Ts

For this testInitialR2T was set toYes andImmediateData
to No so that all data sent by the initiator was solicited by
R2Ts received from the target. This test was repeated for
various values ofMRDSL between 512 bytes and 128KB.
The burst lengths were kept equal to theMRDSL for each
test in order to achieve the maximum number of R2Ts
per transfer. The value ofMaxOutstandingR2T was varied
from 1 to 256.

Figure 10 shows that for any fixed value ofMRDSL,
asMaxOutstandingR2T increases the throughput increases
up to a maximum limit and then levels off. The larger the
number of outstanding R2Ts, the smaller the data transfer
time because the initiator does not have to wait for another
R2T to arrive at the end of each sequence. Hence, there
is better bandwidth utilization. The graph also shows an
interesting relationship: asMRDSL increases, the number
of outstanding R2Ts required to get the highest throughput

Throughput Vs MaxOutstandingR2T

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

MaxOutstandingR2T

T
h

ro
u

g
h

p
u

t (
M

B
/s

ec
)

MRDSLl=0.5KB MRDSL=1KB MRDSL=2KB MRDSL=4KB
MRDSL=8KB MRDSL=32KB MRDSL=128KB

Figure 10. Effect of MaxOutstandingR2T on throughput

for that pdu size decreases. This can be approximated by
the equation:

n*m = 64 (3)

where:
n = Number of OutstandingR2Ts required to achieve

maximum throughput for pdu size
m = MaxRecvDataSegmentLength (in KB)

 1 2 4 8 16 32 64 128 256
0.5 1.6704 4.584 8.1593 12.0708 20.1188 28.8984 38.6971 42.983 43.9762

1 3.6478 7.8801 14.3268 23.925 35.3707 48.3184 50.2325 51.8072 51.8749
2 7.655 15.2414 26.0099 40.0818 53.5416 54.7762 53.6337 53.4511 53.831
4 16.1368 28.6268 43.8112 55.484 57.3806 57.4192 57.6824 56.2435 56.975
8 29.9684 48.6475 58.4606 59.3547 59.5094 58.2166 58.3667 58.9518 58.1555

16 52.671 59.292 60.682 60.852 60.682 60.746 60.276 60.746 60.746
32 59.4938 60.5457 60.8546 61.4921 60.8346 60.924 61.4221 60.131 50.0875
64 60.345 61.321

128 60.9504 61.7321 60.418 60.481 60.9442 61.6494 62.4659 61.6528 61.4988

Table 1. Data values for equation 3

Table 1 shows the test results with the values selected
by equation 3 highlighted. This result might be specific to
the UNH target implementation, but only that target could
be used for this test because no other targets available to us
currently implement more than one outstanding R2T. How-
ever, we expect this result is general because it illustrates
that the R2T, which is intended to give the target control
of its own buffers, also effectively controls the flow on the
connection up to the point where the connection is running
at maximum capacity. Outstanding R2Ts are analogous to
buffer credits in other protocols, and this equation gives
a method for determining the maximum amount of credit
needed in iSCSI writes to achieve full utilization of the con-
nection bandwidth.

6.4 Effect of multiple outstanding com-
mands

Figure 11 shows the effect of increasing the number of
outstanding SCSI write commands on throughput at vari-
ous pdu and burst lengths. In this testMRDSL was varied
from 512 bytes to 128KB, burst lengths were kept equal to
the pdu size, andMaxOutstandingR2T was held constant
at 1. For each pdu size the number of outstanding com-
mands was varied from 1 to 64. The results show that for
a fixed number of outstanding commands, larger pdu sizes
produce higher throughput, and for fixed pdu size, more
outstanding commands produce higher throughput. The
graphs for small pdu sizes (512 and 1024 bytes) do not level
off, but graphs for larger pdu sizes eventually reach a max-
imum beyond which increasing the number of outstanding
commands does not produce any corresponding increase in
throughput. However, the relationship is not as simple as
that forMaxOutstandingR2T given in equation 3.

Effect of outstanding commands at various PDU sizes

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Outstanding Commands allowed

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

MRDSLl=0.5KB MRDSL=1KB MRDSL=2KB MRDSL=4KB
MRDSL=8KB MRDSL=32KB MRDSL=128KB

Figure 11. Effect of multiple outstanding commands

7 Conclusions and future work

Table 2 summarizes the conclusions of this study, and
shows the suggested parameter settings that produce the
best performance based on our observations. Note that in
several cases the best values are not the default values spec-
ified in the iSCSI standard [2]. In general, one can conclude
that small pdu and burst sizes should be avoided, immedi-
ate data and unsolicited data-out pdus are beneficial, and
the number of sectors per command, number of outstand-
ing commands and number of outstanding R2Ts should be
maximized.

Further testing needs to be done on the items marked
in Table 2, and to determine additional co-dependencies be-
tween parameters. If possible, the linear equations given in
this paper should be extended to include additional factors
such as target processing time. Initiator scheduling poli-
cies to dispatch commands across multiple connections in

ImportantImportantOffOffDigest

Important

Needs further
testing

Important

Not relevant

Not relevant

Not relevant

Not relevant

Not important

Important

Importance

reads

Important-1024Num sectors/command

Needs further
testing

1Does not matterMaxConnections

Important->= 64Outstanding commands

Important1>= (64/MRDSL)MaxOutstandingR2T

ImportantYesNoInitialR2T

ImportantYesYesImmediateData

Important64KB>= 32KBFirstBurstLength

Important256KB>= 32KBMaxBurstLength

Important8KB>= 8KBMaxRecvDataSegment
Length

Importance

writes

Defaul
t

Best valueParameter

ImportantImportantOffOffDigest

Important

Needs further
testing

Important

Not relevant

Not relevant

Not relevant

Not relevant

Not important

Important

Importance

reads

Important-1024Num sectors/command

Needs further
testing

1Does not matterMaxConnections

Important->= 64Outstanding commands

Important1>= (64/MRDSL)MaxOutstandingR2T

ImportantYesNoInitialR2T

ImportantYesYesImmediateData

Important64KB>= 32KBFirstBurstLength

Important256KB>= 32KBMaxBurstLength

Important8KB>= 8KBMaxRecvDataSegment
Length

Importance

writes

Defaul
t

Best valueParameter

Not relevantNot Important-Does not matterPhase collapse

Further testing
required

Further testing
required

Not important

Not important

Further testing
required

YesDoes not matterDataSequenceInOrder

Further testing
required

YesDoes not matterDataPDUInOrder

Not important-Does not matterScheduling policy

(RR, LUNA)

Not important-Does not matterNumber of LUNs on
one connection

Not relevantNot Important-Does not matterPhase collapse

Further testing
required

Further testing
required

Not important

Not important

Further testing
required

YesDoes not matterDataSequenceInOrder

Further testing
required

YesDoes not matterDataPDUInOrder

Not important-Does not matterScheduling policy

(RR, LUNA)

Not important-Does not matterNumber of LUNs on
one connection

Table 2. Suggested iSCSI parameter settings

response to dynamic traffic conditions need to be imple-
mented and studied. Studies with different types of storage
devices are essential, as are tests using newer platforms
with 64-bit buses and multi-processor configurations. Fi-
nally, a more detailed study of the interaction between
iSCSI and TCP needs to be undertaken, with a goal of
enabling iSCSI to dynamically set TCP parameters to im-
prove performance.

References

[1] T10 Technical Committee of the NCITS. SAM2, SCSI
architecture model – 2. Technical Report T10 Project
1157-D Revision 23, National Committee for Informa-
tion Technology Standards, March 2002.

[2] J. Satran et al. Internet small computer systems in-
terface (iSCSI). Technical Report RFC3720, Internet
Engineering Task Force (IETF), April 2004.

[3] Kalman Z. Meth and Julian Satran. Design of the
iSCSI protocol. InProceedings of the 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 116–122, April 2003.

[4] Stephen Aiken et al. A performance analysis of the
iSCSI protocol. InProceedings of the 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 123–134, April 2003.

[5] Kalman Z. Meth. iSCSI initiator design and implemen-
tation experience. InProceedings of the 10th NASA

Goddard Conference on Mass Storage Systems and
Technologies, pages 297–303, April 2002.

[6] Peter Radkov et al. An experimental comparison of
block- and file-access protocols for ip-networked stor-
age. InProceedings of the Usenix Conference on File
and Storage Technologies, March 2004.

[7] Ismail Dalgic et al. Comparative performance eval-
uation of iSCSI protocol over metro, local, and wide
area networks. InProceedings of the 21th IEEE/12th
NASA Goddard Conference on Mass Storage Systems
and Technologies, April 2004.

[8] University of New Hampshire InterOperability Labo-
ratory.iSCSI Initiator and Target Reference Implemen-
tations for Linux. http://sourceforge.net/projects/unh-
iscsi.

[9] Microsoft. iSCSI Software Initiator Version
1.04. http:// www.microsoft.com/ downloads/
details.aspx?FamilyID= 12cb3c1a-15d6-4585-b38-
befd1319f825 &displaylang=en.

