
Using Constraint Technology to Diagnose Configuration Errors in Networks
Managed with SPECTRUM

Mihaela Sabin, Robert Russell, Eugene Freuder, and Ioan Miftode

Computer Science Department
University of New Hampshire

Durham, NH 03824, USA
fmcs,rdr,ecf,imiftodeg@cs.unh.edu

(603) 862-3778

Abstract

The model-based reasoning approach to network manage-
ment supports problem-solving capabilities, such as finding
root causes of signaled faults. A distinct modeling tech-
nique that has recently emerged in the field of network
management is the utilization ofconstraints. In industry, a
prime example of the use of model-based reasoning in enter-
prise management is SPECTRUM1. The platform supports
modeling the enterprise components, with their attributes,
relations among components, and component behavior.

The main goal of our research project is to enhance SPEC-
TRUM’s management capabilities with constraint-based rea-
soning techniques. To demonstrate these techniques, we de-
signed and implemented a prototype constraint-based archi-
tecture for SPECTRUM that focuses on configuration man-
agement. This work is a direct extension of previous re-
sults from diagnosing problems with Internet network ser-
vices, such as FTP and DNS. The example considered in
this project is a simple local area network monitored with
SPECTRUM management tools. The network manager pro-
vides sets of specifications which are used to synthesize a
constraint representation of the network configuration. This
is used to automatically build a diagnostician which in turn
uses constraint algorithms and actual data obtained from the
running network to detect configuration faults.

Keywords: fault management, configuration management,
model-based diagnosis, constraint satisfaction, diagnostic tools.

1 Introduction

Network service configuration is the process of assigning
values to configuration variables in such a way as to enable
a network service to operate according to the wishes of its
managers. However, it is invariably the case that a choice

1Trademark of Aprisma

for one variable has an effect on the subsequent choice that
can be made for a different variable – the variables are sel-
dom completely independent of one another. In effect, the
values chosen for one variable are constrained by values as-
signed to other related variables. Configuration errors arise
when the choices are inconsistent. Managers of large net-
works are confronted with hundreds if not thousands of con-
figuration choices, and the constraints between them may
not be obvious. Likewise, the inconsistencies produced by
making wrong choices may not be immediately obvious,
and may not manifest themselves in terms of operational
faults until days or weeks after the erroneous choice was
made.

Constraint-based network management tools do address this
problem. Based on a model-based approach[Hamscher,
Console, & de Kleer, 1992], constraint technologyhas been
used to diagnose communication protocols[Riese, 1993]
and special classes of randomly generated circuits[El Fat-
tah & Dechter, 1995]. More recently, constraints have been
applied to routing to solve bandwidth allocation planning
[Frei & Faltings, 1999] and QoS-based multi-domain rout-
ing [Calisti & Faltings, 1999]. In our work, we have ex-
tended the problem domain to encompass fault management
of Internet network services[Sabin, Russell, & Freuder,
1997], [Sabinet al., 1999].

At the center of constraint technology lies the concept of the
constraint satisfaction problem (CSP)[Freuder & Mack-
worth, 1994]. A CSP is defined by a set of variables, a set
of value domains, and a set of constraints. Each variable
has an associated domain of values that can be assigned to
that variable. A constraint is defined on a subset of variables
and expresses the combinations of values the variables are
allowed to take. To solve a CSP means to find value assign-
ments for all variables such that all constraints are satisfied.

It is natural to cast network service configuration problems
in the CSP framework by defining a CSP variable for each
network service variable such that the domain of the CSP
variable is the set of values that a manager is allowed to
assign to that network service variable. The constraints are

then the relationships between the various choices for the
variables. A configuration error or fault occurs when one or
more of the constraints is violated.

In industry, a prime example of the model-based rea-
soning approach applied to network management is
SPECTRUM[Lewis, 1999]. SPECTRUM’s auto-discovery
tool constructs the enterprise model that can then be used in
real-time to perform event correlation or other management
tasks. In this paper we show how a constraint-based archi-
tecture can be automatically constructed and then operated
to diagnose configuration errors. To construct and operate
the constraint-based tool we access and query SPECTRUM’s
database.

The main goal of this project is to enhance SPECTRUM’s
management capabilities with constraint-based reasoning
techniques. This work is a direct extension of previous re-
sults from diagnosing problems with Internet network ser-
vices, such as FTP and DNS[Sabin, Russell, & Freuder,
1997], [Sabinet al., 1999]. The example considered in this
paper is a simple local area network monitored with SPEC-
TRUM management tools. The network manager provides
sets of specifications which are used to synthesize a con-
straint representation of the network configuration. This is
used to automatically build a diagnostician which in turn
uses constraint algorithms and actual data obtained from the
running network to detect configuration faults.

The paper is organized as follows. In the next section we
present a sample management problem dealing with DNS
name service configuration. We use this example as a run-
ning example throughout the paper to describe our approach
to fault management. In Section 3 we introduce the CSP
paradigm and discuss its applicability to configuration er-
ror diagnosis. We then elaborate on the construction and
operation phases that support our constraint-based solution.
Section 4 describes the constraint-based architecture and
its integration with SPECTRUM. Section 5 summarizes the
contribution of our work and outlines directions for future
work.

2 Sample Problem: Name Service
Configuration

As a simple but illustrative example, consider the situation
encountered by every network administrator who must man-
age a local area network (LAN). Among other tasks, he is
responsible for the assignment of IP addresses and DNS
names to every node in the LAN, including server nodes,
client nodes, router nodes, etc. In order for the network
to function and be managed effectively, these assignments
are made known through the use of various software tools.

Consequently, the information defining these assignments
is often replicated in several different locations and formats
in the network.

There is a very real potential for these various repositories
to contain contradictory information as the LAN’s config-
uration changes. For example, binding an IP address to
a DNS name is usually enforced by a DNS name server
whose database stores that binding. An identical binding is
replicated, stored and used by integrated management plat-
forms, such as SPECTRUM. SPECTRUM’s database main-
tains updated configuration information about all the net-
work devices and services currently running in the network.
If a change occurs in the network and is not consistently
reflected in all the databases, then the LAN configuration
information is contradictory. This can easily happen in rel-
atively large LANs where different administrators are re-
sponsible for configuration settings made by the different
network and management tools.

The problem can also manifest itself at many levels that are
often difficult to trace. For example, as discussed in an ear-
lier work [Sabin, Russell, & Freuder, 1997], DNS name res-
olution can be done using files local to the host requesting
the resolution, or using files residing on a name server that
is accessed remotely from that host. If these files contain
contradictory information, it can often be hidden until, for
example, the type of resolution is switched from global to
local during infrequently occurring situations.

Our prototype system is designed to solve the following
generalization of this simple configuration example (see
Figure 1):

Given

� a set of IP addresses for which the network ad-
ministrator wants to check the name configura-
tion, and

� any number of different sources that define the
bindings between IP addresses and DNS names,

Detect any and all configuration inconsistencies before
they lead to operational faults.

3 Diagnosis with Constraint Technol-
ogy

In this section we present our constraint-based solution ac-
cording to the following organization: Section 3.1 starts
with a brief introduction to the constraint satisfaction prob-
lem (CSP) paradigm. Section 3.2 gives details about the two
steps in theConstruction Phase:

Diagnosis Results
Output

Input IP addresses CONSTRAINT ENGINE

source file 1 source file N...source file 2

LAN

Figure 1: Constraint-based diagnosis of configuration errors with a LAN name service

1. the automatic synthesis of a constraint representation
or a constraint sourcefor the above sample problem,
and

2. the compilation of aconstraint engineby applying the
approach we presented in[Sabin, Russell, & Freuder,
1997].

Section 3.3 presents theOperational Phase, in which we
show the constraint engine “in action”: how constraint al-
gorithms and probing tools work to detect and report con-
figuration inconsistencies. Section 3.4 shows some results
corresponding to the example introduced in section 2 to il-
lustrate the two phases. Section 3.5 concludes with a more
general solution in which we consider parameterized prob-
ing and more than two sources to check configuration valid-
ity.

3.1 Constraint Satisfaction Problem
Paradigm

CSP framework is model-based. To diagnose a system
within the CSP framework one must first represent the
model of the system structure and correct behavior. The
structural elements of the system being diagnosed are mod-
eled as CSP variables, and the behavioral relationships
among the constituent components are expressed as con-
straints.

Applied to fault and configuration management of network
services, the building blocks of the network service model
are the management object descriptions associated with net-
work devices and modeled as CSPvariables. The diagnosti-
cally meaningful dependencies among the network devices
are modeled asconstraints. The diagnosis scheme employs
a CSP diagnostic engine which outputs the expected diag-
noses based on the discrepancies between the predictions
of the CSP representation and the observations from the
running network service. The diagnosed network service
is found faulty if some constraints can not be satisfied, in

which case the violated constraints are precise indicatorsof
the cause of the fault.

In our work in the area of diagnosis we use two extensions
to the classical paradigm. First, if a fault exists, the CSP
algorithm does not settle for “no solution found”. Instead,
it records the partial solutions as valid diagnoses for which
some constraints are violated[Freuder & Wallace, 1992].
Second, the distributed nature of network services and ap-
plications, as well as the dynamic configuration changes
cannot impose a predefined set of participating network el-
ements. The relevant or active portions of the model that in-
clude observed symptoms and actual configuration data can
be isolated at run-time. This is the mechanism of activity
control proposed in[Mittal & Falkenhainer, 1990]. Third,
we embed network probing tools in the CSP representa-
tion to get dynamic values for the CSP variables. Details
about how the CSP paradigm is applied to network man-
agement can be found in[Sabin, Russell, & Freuder, 1997]
and[Sabinet al., 1999].

The CSP paradigm has proven its applicability in many ap-
plication domains. Besides diagnosis, other examples are:
scheduling, planning, resource allocation, and product con-
figuration. This illustrates one essential strength of the CSP
paradigm: representing problems in terms of constraints is
the natural language of discourse for expressing many real-
world problems. Moreover, the declarative character of the
CSP language has the advantage of totally decoupling the
CSP representation phase from the solving phase. Thus, the
user of constraint-based diagnostic tools is not concerned
with implementing CSP algorithms, but focuses on the rep-
resentation of the diagnosis problem. Another advantage
of the CSP paradigm is the wealth of thoroughly examined
CSP algorithms, from which the most effective for the prob-
lem at hand can be chosen.

3.2 Construction Phase

The following scenario exemplifies a diagnostic task for the
sample problem introduced in Section 2:

1. The network administrator wants to diagnose the con-
figuration of the name service for the IP address
132.177.12.157.

2. He examines two source files which have informa-
tion about the names configured for the given IP ad-
dress. The two source files areSPECTRUM source
andDNS source, and are obtained from querying the
SPECTRUMplatform and DNS server databases.

3. Access to the source files is provided by two prob-
ing functions: resolveIP SPECTRUM and re-
solveIP DNS. Each probing function looks up the
IP address in the corresponding source file and returns
the configured name, if any.

4. If both probes return the same name, then name config-
uration specified in the two sources is consistent. Oth-
erwise, there are four error cases:

case I: neither SPECTRUM source, nor
DNS source has a configured name for the
given IP,

case II and III: eitherSPECTRUM source
or DNS source has the name, but not both
sources, and

case IV: the names found in the two sources are
different.

The CSP formulation of the above scenario defines the same
diagnostic task (Figure 2) in CSP terms, i.e. variables, val-
ues, and constraints. Thus, we identify three CSP variables:
V0 corresponds to the IP address, andV1 andV2 repre-
sent the results of querying theDNS source andSPEC-
TRUM source for the name assigned to the IP address.
The value forV0 is predefined to “132.177.12.157”. The
values forV1 andV2 are dynamically acquired from the
two source files by “asking” the two probing functions to
get those values. The CSP formalism usesDEF directives
to associate predefined values to variables, andASK direc-
tives to get on-line values from the running network.

The dynamic values are not the only dynamic aspect in our
example. VariableV1 andV2 are activated throughARV
(always require variable) activity constraints. The role of
the activity constraints is to extend or reduce the CSP repre-
sentation (variables and constraints) in a dynamic fashion,
based on on-line changes observed in the running network.
In our example, the presence of theV0 variable stands for
the fact that there is an IP address whose name configura-
tion the network administrator needs to check. Thus,V0
“triggers”, or activates, the addition of variablesV1 andV2.
The CSP formalism uses twoARV constraints to represent
the dynamic addition of the two variables. Finally, once
they are active, a compatibility check of their values can be
performed. CSP usesCON statements to express constraints

that restrict the value assignments the “constrained” vari-
ables can simultaneously take.

Figure 2 also shows that the network administrator is
warned when either anASK directive (value cannot be
obtained dynamically), or aCON directive (compatibility
check failed) is violated. That is why we associate diag-
nostic messages with theASK andCON statements in the
CSP code.

How do we use the CSP code to perform automatic di-
agnosis? In our previous work we showed that constraint
technology can be used to generate diagnostic tools for net-
work services. Figure 3 illustrates the architecture of the
prototype system ADNET presented in[Sabin, Russell, &
Freuder, 1997]. A constraint compiler translates the CSP
code into a C++ source. The resulting C++ source en-
codes the diagnosis procedure for solving the original CSP
problem. The C++ source is then compiled and linked to
produce a constraint engine capable of probing and CSP
solving. Probing capabilities are specified in the CSP code
throughASK directives, and made available to ADNET in a
probing library. Solving capabilities are made available in a
constraint library.

In this paper we take the automation process of generating
diagnostic tools a step further. The challenge we address
is to assist the network administrator with writing the con-
straint code. This way we achieve two objectives: we shield
the network administrator from

1. the implementation details of the ADNET constraint
algorithms, and

2. the syntax details of the ADNET constraint language.

The sample problem in Section 2 can be formulated gener-
ically as a constraint template (Figure 4).V0 deals with
IP input valuesthe network administrator is interested in
verifying. V1 and V2 probe the filessourcefile 1 and
sourcefile 2 using the probesprobe1 and probe2. The
rest of the template resembles the generated constraint code,
and shows the activation ofV1 andV2 and the equality con-
straint between them.

We observe that the constraint template is parameterized in:
the input from the network administrator, the probe function
prototypes, and the source file names. This information is
sufficient to synthesize the actual constraint code from the
constraint template. The input and output information for
the representation synthesis prepass is shown in Figure 5.
The representation synthesis prepass module and the AD-
NET module form the construction phase.

VAR V0 DEF ‘‘132.177.12.157’’
VAR V1 ASK resolveIP_DNS(‘‘DNS_source’’, $V0)

‘‘*** $V0: nonexistent IP in the DNS database’’
VAR V2 ASK resolveIP_SPECTRUM(‘‘SPECTRUM_source’’, $V0)

‘‘*** $V0: nonexistent IP in the SPECTRUM database’’
START V0
ARV V0 => V1
ARV V0 => V2
CON $V1 EQUAL $V2

‘‘*** Inconsistent names for IP=$V0, $V1 different from $V2’’

Figure 2: Generated constraint code for checking name configuration consistency in the DNS and SPECTRUM databases

code
Constraint Constraint

engine

Constraint
library

C++
compiler

Probing

Constraint
Compiler

Generated
C++ code

library

ADNET System

Figure 3: Architecture of the Automatic Diagnosis for Network Services (ADNET) prototype system

ARV

EQUAL

ARV

V1 V2

probe_function_1 probe_function_2

source_file_1
looks up IP in looks up IP in

source_file_2

Input IP

V0
VAR V0 IP input value
VAR V1 ASK probe 1(sourcefile 1, V0)
VAR V2 ASK probe 2(sourcefile 2, V0)

START V0

ARV V0 => V1
ARV V0 => V2

CON V1 EQUAL V2

Figure 4: Graphical and text representation of the constraint template

3.3 Operational Phase

The result of the construction phase is a constraint engine
which operates on a LAN to diagnose problems with the
name configuration. We call theOperational Phasethe pro-
cess by which the network administrator actually uses the
constraint engine to find the diagnosis results.

The diagram in Figure 6 gives an overall view of the opera-
tional phase when two databases are used. It also highlights
the principle of model-based diagnosis employed by the
constraint technology. Probing the source files and prompt-
ing the network administrator to get management informa-
tion results in a set ofobservations. Using the constraint
representation to encode the diagnostic procedure resultsin
a set ofpredictions. The task of the constraint algorithm is

Constraint
Template

Constraint
engine

Source file
names

Probe function
prototypes

network
administrator

Input from

Representation
Synthesis ADNET

Systemcode
constraint
Generated

Prepass

Figure 5: Construction Phase: generate a constraint enginefrom a constraint template of the diagnosis problem

to find discrepancies between observations and predictions.
These discrepancies correspond to the constraint violations
the algorithm records during the solving process. The out-
put diagnosis results contain diagnostic messages from the
generated constraint code, which are paired with the vio-
lated constraints.

3.4 Diagnosis Results

Figure 7 shows the IP and name bindings contained in the
two source files obtained from the DNS and SPECTRUM
databases respectively. Figure 8 shows the text of the gener-
ated constraint code in which the input IP addresses become
predefined values for theV10 variable. The probing func-
tions dynamically “ask” for name values from the source
files whose names are shown. Figure 9 shows the execu-
tion trace using the input data from Figure 7. The diagnoses
generated are indicated by lines starting with “***”, and are
summarized in Figure 10.

3.5 Generalization

In this section we briefly consider the straight-forward gen-
eralization of the previous example to an arbitrary number
of databases, where consistency is required among all of
them.

The diagram in Figure 11 a) gives an overall view of the
generalized operational phase. There is one probe function
corresponding to each database involved in the constraints.
Figure 11 b) shows the representation and constraints for
a typical network node, with a given IP address, in which
equality is required for the corresponding name entry in
each database. During the construction phase, this repre-

sentation is replicated for each IP address.

Two additional phases are envisioned but not yet imple-
mented. One would allow dynamic alteration of the CSP
representation, and one would allow not only reporting of
configuration errors but also their automatic correction.

4 Design of the Constraint-Based Ar-
chitecture

The design and development of a constraint-based architec-
ture and its integration with SPECTRUM includes the fol-
lowing steps:

1. Identify a sample configuration problem using a local
area network which has SPECTRUM installed and in
operation.

2. Develop the CSP representation for the configuration
problem of interest.

3. Develop the auxilliary probing functions needed by the
CSP engine to check constraints. These functions must
interact with SPECTRUM to obtain network data dy-
namically.

4. Diagnose the configuration problem with a constraint
engine that finds minimal sets of violated constraints.

What distinguishes this architecture from the other
constraint-based management tools we developed previ-
ously is the delegation of probing functions to the SPEC-
TRUM management platform. There are two approaches
to allow for exchange of data between SPECTRUM and the
constraint-based architecture:

PredictionsObservations

Constraint Algorithm

Diagnosis Results
Output

Input from the
Network

Administrator

Source
file 1

Source
file 2

probe
function 2

CONSTRAINT ENGINEProbing Constraint

Representationprompt
function

probe
function 1

Figure 6: Operational phase uses two source files and input from the network administrator to produce the diagnosis results.
Probing and the constraint representation feed the constraint algorithm with observations and predictions.

DNS source file

132.177.4.157 birch.cs.unh.edu
132.177.4.159 mint.cs.unh.edu
132.177.4.4 csrouter.cs.unh.edu
132.177.4.30 lava.cs.unh.edu

SPECTRUM source file

132.177.4.157 birch.cs.unh.edu
132.177.4.158 garnet.cs.unh.edu
132.177.4.159 lint.cs.unh.edu
132.177.4.4 csunhrouter.cs.unh.edu
132.177.4.26 phub1.cs.unh.edu

Figure 7: IP and name bindings in the two source files obtainedfrom the DNS and SPECTRUM databases

VAR V10
DEF {"132.177.4.158", "132.177.4.159", "132.177.4.30", "128.177.4.30"}

VAR V11
ASK resolveIP_DNS("DNS_source", $V10)

VAR V12
ASK resolveIP_SPECTRUM("SPECTRUM_source", $V10)

Figure 8: Text of the generated constraint code.

� through the Platform External Interfaces (PEIs), by us-
ing interfacing tools to transfer data to/from files;

� through the Application Programming Interfaces
(APIs), by defining new C++ objects that are compiled
into SPECTRUM.

While the API approach allows integration of an external
application at the source level, the PEI approach uses a set

of procedures and interfaces available both in SPECTRUM

and the external application. A viable method of integration
combines the best of both approaches: rapid prototyping
with PEIs, and then a better performance solution using the
API approach. We therefore decided to start with the PEI
approach for our prototype. Use of the API approach is
discussed in section 5 on future work.

V10 <- "132.177.4.158"
V11 <- "unknown"
V12 <- "garnet.cs.unh.edu"

V10 <- "132.177.4.159"
V11 <- "mint.cs.unh.edu"
V12 <- "lint.cs.unh.edu"

V10 <- "132.177.4.30"
V11 <- "lava.cs.unh.edu"
V12 <- "unknown"

V10 <- "128.177.4.30"
V11 <- "unknown"

Found 3 minimal diagnose(s):
*** - "132.177.4.158": nonexistent IP in the DNS database
V10 -- "132.177.4.158"
V11 -- "unknown"
V12 -- "garnet.cs.unh.edu"

*** - Inconsistent names for IP="132.177.4.159",
"mint.cs.unh.edu" different from "lint.cs.unh.edu"

V10 -- "132.177.4.159"
V11 -- "mint.cs.unh.edu"
V12 -- "lint.cs.unh.edu"

*** - "132.177.4.30": nonexistent IP in the SPECTRUM database
V10 -- "132.177.4.30"
V11 -- "lava.cs.unh.edu"
V12 -- "unknown"

Figure 9: Execution trace for the input data in Figure 7

Found 3 minimal diagnose(s):
*** - "132.177.4.158": nonexistent IP in the DNS database
*** - Inconsistent names for IP="132.177.4.159",

"mint.cs.unh.edu" different from "lint.cs.unh.edu"
*** - "132.177.4.30": nonexistent IP in the SPECTRUM database

Figure 10: Results for the input data in Figure 7

The integration of our constraint-based application for man-
aging network configuration requires retrieval of SPEC-
TRUM data and synthesis of a constraint model of con-
figuration management. The PEI interfacing tool that al-
lows access to and retrieval of network topology data is the
SPECTRUMTopology Exporttool. The tool is implemented
by using the SPECTRUM Command Line Interface (CLI), a
database query language that enables retrieval of informa-
tion from the SPECTRUM database. This database collects
the results of the SPECTRUM’s automatic topology mapping
facility, known as the AutoDiscovery mechanism. AutoDis-
covery finds devices on the network and creates correspond-
ing models in the database. Using the Topology Export tool
information from the database can be stored in a file for use
by the constraint-based configuration diagnostician.

5 Conclusion and Future Work

This paper describes the design and implementation
of a prototype constraint-based architecture to enhance
SPECTRUM’s configuration management capabilites with
constraint-reasoning technology. This work is a direct ex-
tension of previous results diagnosing problems with Inter-
net network services, such as FTP and DNS[Sabin, Rus-
sell, & Freuder, 1997], [Sabinet al., 1999]. The example
considered is a simple local area network monitored with
SPECTRUM management tools. We use constraints to syn-
thesize a constraint representation of the network configu-
ration, and then solve possible configuration problems with
constraint algorithms. The constraint-based architecture ac-

file 1
Source

file 1
Source

Imput from
Network

Administrator

Diagnosis Results
Output

...

file 1
Source

Constraint
Engine

a)

Vi, 0

Vi, NVi, 1

...
retrieves name retrieves name retrieves name

EQUAL

EQUAL

IP address

ARV
ARV ARV

Vi, 2

of node i

probe function 1

from database 1

probe function 2

from database 2

probe function N

from database N

b)

Figure 11: Operational phase and constraint template for anarbitrary number of source files

cesses the SPECTRUM management database to obtain the
current values for configuration parameters in order to de-
tect faults.

There are a number of extensions to be made to our proto-
type system. The first would be to improve the matching of
DNS names. Currently our equality constraints for DNS
names utilize exact character for character string match-
ing. However, it is common for host names to be used
in some places and fully qualified domain names in oth-
ers. Therefore, it would be convenient for “lava”, “lava.cs”,
“lava.cs.unh” and “lava.cs.unh.edu” to all be accepted as
equal, but “lav”, “lav.cs.u”, etc. to be rejected. This can
be easily handled since the test for constraint satisfaction
is an arbitrary boolean function that can be defined by the
user.

The second improvement to the prototype would be to de-
fine probe functions that perform real-time interrogation of
active processes, such as a DNS server, a running SPEC-
TRUM manager, etc. The current probe functions simply
search files that have been prepared off-line, but the probe
mechanism is completely general, and our earlier work
[Sabin, Russell, & Freuder, 1997] demonstrated the util-
ity of real-time probe functions. This will require use of
the SPECTRUM Developer’s Tools, which provide C++ in-
terfaces that extend SPECTRUM’s functionality and enable
developers to integrate new C++ objects and programs with
SPECTRUM.

A third improvement would be to revise the construction
phase so that it is performed as part of running the DCSP
engine, rather than as a prepass occurring before compila-
tion. This will require extensions to the DCSP language to
permit dynamic instantiation of an arbitrary number of com-
ponents as determined by the number of values in a given
domain. This research will require an extension along the
lines being investigated for Composite CSP.

Another area of future work is to extend the problem do-
main beyond simple DNS name to IP address mapping in
order to encompass other areas of configuration manage-
ment, such as connectivity, topology, routing, quality of ser-
vice provisioning, etc.

Acknowledgements

This work was supported in part by Aprisma, Inc.

References

[Calisti & Faltings, 1999] Calisti, M., and Faltings, B.
1999. A distributed approach for QoS-based multi-
domain routing. InProceedings of the AAAI’99 Work-
shop on Artificial Intelligence in Distributed Information
Networks (AiDIN’99).

[El Fattah & Dechter, 1995] El Fattah, Y., and Dechter, R.
1995. Diagnosing tree-decomposable circuits. InPro-
ceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, 1742–1748.

[Frei & Faltings, 1999] Frei, C., and Faltings, B. 1999.
Bandwidth allocation planning in communication net-
works. InGlobecom’99.

[Freuder & Mackworth, 1994] Freuder, E., and Mack-
worth, A., eds. 1994.Constraint-Based Reasoning. MIT
Press.

[Freuder & Wallace, 1992] Freuder, E., and Wallace, R.
1992. Partial constraint satisfaction. InArtificial Intelli-
gence, 21–71.

[Hamscher, Console, & de Kleer, 1992] Hamscher, W.;
Console, L.; and de Kleer, J., eds. 1992.Readings in
Model-Based Diagnosis. Morgan Kaufmann Publishers.

[Lewis, 1999] Lewis, L. 1999. Event correlation in SPEC-
TRUM and other commercial products. Technical Report
ctron-Imp-99-05, Cabletron.

[Mittal & Falkenhainer, 1990] Mittal, S., and Falken-
hainer, B. 1990. Dynamic constraint satisfaction prob-
lems. InProceedings of the 8th National Conference on
Artificial Intelligence, 25–32.

[Riese, 1993] Riese, M. 1993. Model-based diagnosis
of Communication Protocols. Ph.D. Dissertation, Swiss
Federal Institute of Technology, Lausanne.

[Sabinet al., 1999] Sabin, M.; Bakman, A.; Freuder, E. C.;
and Russell, R. D. 1999. A constraint-based approach
to fault management for groupware services. In Sloman,
M.; Mazumdar, S.; and Lupu, E., eds.,Integrated Net-
work Management VI. IEEE Publishing.

[Sabin, Russell, & Freuder, 1997] Sabin, M.; Russell,
R. D.; and Freuder, E. C. 1997. Generating diagnostic
tools for network fault management. In Lazar, A. A.;
Saracco, R.; and Stadler, R., eds.,Integrated Network
Management V. Chapman & Hall.

