
Efficient Parallel Execution of Sequence Similarity Analysis Via

Dynamic Load Balancing

James D. Jackson

Philip J. Hatcher

Department of Computer Science

Kingsbury Hall

University of New Hampshire

Durham, NH 03824 USA

Abstract

We present a parallel approach to analyzing se-
quence similarity in a set of genomes that employs dy-
namic load balancing to address the variation in execu-
tion time for genes of different lengths and complexity,
the variation in processor power in different nodes of
the computer cluster, and the variation in other load
on the nodes. Our approach executes using MPI on a
cluster of computers. We provide experimental results
to demonstrate the effectiveness of using our approach
in conjunction with NCBI BLAST.

1 Introduction

The identification of putative orthologous genes is
critical for comparative and functional genomics. The
first step in analyzing orthology in a set of genomes is
to identify homologs. This is typically done by com-
puting pairwise alignments between all genes in the
set of genomes. Even using a heuristic-based approach
such as BLAST [1], this is a computationally intensive
task, since there are O(n2) pairs to consider in a set
of n genes.

At the University of New Hampshire we have
built a system for analyzing genomic data that al-
lows genomes to be added incrementally. Homologs are
computed and stored for all pairs of genomes. When a
new genome is added, homologs are computed individ-
ually for it paired with every other genome already in
the system. Once the homologs are computed, a vari-
ety of approaches can be executed to analyze orthology
for any subset of the genomes in the system.

Since the homology analysis is the most compu-
tationally intensive component of the system, we have
provided a parallel implementation for it. This paral-
lel implementation, which utilizes MPI [6], is designed
to run on either large-scale clusters of identical pro-
cessors, such as the IBM Cell cluster available on our

campus, or on smaller-scale clusters of heterogeneous
Intel servers found in individual departments.

Targeting clusters of heterogeneous machines
meant that we needed to include dynamic load balanc-
ing in our approach in order to spread the work across
processors with varying clock speeds. In addition, of
course, the homology analysis itself presents a varying
workload, since the time to analyze a gene against a
set of genes varies upon both the gene length and the
complexity of the gene. For example, Figure 1 shows
the variation in running time when using BLAST to
analyze a set of Human1 proteins against itself. Gen-
erally, running time correlates with protein length but
there is considerable variation.

We also wanted our approach to work with a va-
riety of tools for doing the homology analysis. For in-
stance, while most of our users are primarily focused
on using BLAST, there are efficient implementations
of the Smith-Waterman alignment algorithm for the
IBM Cell [5] [7] that we wanted to be able to use on
that cluster. We also did not want to require that the
source code for the tool be available. Therefore, our
implementation allows the homology analysis tool to
be invoked as an executable, connecting to its inputs
and outputs through the file system.

There has been considerable work on parallelizing
BLAST. One of two basic strategies is followed: query
segmentation or database segmentation.

In query segmentation (e.g. [2]), the sequence
database is replicated on all processing nodes, the
query sequences are distributed among the nodes, and
different queries are worked on at the same time. This
allows BLAST to be treated as a black box and works
well when the sequence database fits in the memory of
the processing nodes.

If the sequence database does not fit in memory,

1Homo sapiens data (67033 proteins; 32M amino acids)
downloaded from the European Bioinformatics Institute in
November 2010.



then database segmentation (e.g. [4]) can be employed.
The sequence database is distributed among the pro-
cessing nodes, the queries are replicated on all process-
ing nodes, and queries are processed against different
segments of the database at the same time. How-
ever, all E-values must be corrected before they are
reported, since the E-value is dependent on the overall
size of the database. This requires that the BLAST
box be opened up in order to implement the necessary
correction.

In our environment the sequence database is rel-
atively small, containing the sequences from a single
genome, and therefore it will fit in memory. In addi-
tion, we want to treat the homology analysis tool as
a black box. Therefore, our implementation utilizes
query segmentation.

Nearly all implementations of query segmenta-
tion use simple static load balancing where queries
are evenly distributed in advance among the process-
ing nodes, either based upon query count or query
length. Wang and Lefkowitz [8] implemented a hybrid
approach in which 90% of the workload is allocated
statically and the remaining 10% is held in reserve
to allocate dynamically on demand. Because of our
interest in heterogeneous clusters, and clusters with
dynamically varying work loads, our implementation
is apparently unique in that it fully utilizes dynamic
load-balancing. We demonstrate that this use of dy-
namic load-balancing can be performed with very low
overhead.

2 Implementation

Our implementation currently utilizes NCBI
BLAST [3], targets a Linux environment, and is de-
picted visually in Figure 2. We use a master/worker
model to dynamically distribute the load. There is
one master MPI process that reads the query file. The
master reads a block of queries from the file, and then
sends them to a worker MPI process that has requested
more work. We allocate one worker process for each
processor in the cluster we are utilizing. The master
and the worker communicate using MPI messages.

A worker runs a BLAST search on the queries
it has been sent. The search is performed against
the sequence database, which is replicated within each
worker process. The worker uses fork/exec to initi-
ate the BLAST executable and utilizes pipes to send
queries to and receive results from the BLAST process.

Workers send BLAST results to a single writer
MPI process. The writer process writes the results
into a file. After the worker sends the results to the
writer, it then requests more work from the master
process.

A key issue is choosing the block size for the
blocks of queries to be sent from the master to the
workers. In general a small block size is desirable to
get the most benefit from the dynamic load balancing,
otherwise one worker process might end up processing
the last block long after all other workers have finished.
On the other hand, too small a block size could result
in too much overhead in MPI message passing and the
repeated invocations of BLAST.

In addition, what units should we use to mea-
sure block size? Because of the variability in the time
required for different queries, we decided to use total
sequence length as the metric for block size, rather
than number of queries. We pack queries into a block
until the block size is reached. Note that the last query
in the block will likely cause the actual block size to
exceed the target block size, as we do not split queries
across two blocks.

Our system uses a block size of 20K amino acids
(or nucleotides). In the next section, which provides
an experimental evaluation of our approach, we will
include a discussion of the experiments that informed
our decision on block size.

3 Experimental Evaluation

We have evaluated our approach on a 36-
processor Linux cluster consisting of the following four
nodes:

• c0: 12 Intel Xeon 2.66 GHz processors, 3 GB main
memory;

• c1: 8 Intel Xeon 1.86 GHz processors, 1.5 GB
main memory;

• c2: 8 Intel Xeon 1.86 GHz processors, 1.5 GB
main memory;

• c3: 8 Intel Xeon 3.00 GHz processors, 1.5 GB
main memory.

This cluster is representative of the clusters we are
targeting: ones with nodes that have a large amount of
memory and that have a varying number of processors
with varying clock speeds.

The evaluation used the following protein
datasets:

• Homo sapiens (aka Human): 67033 proteins;
32M amino acids; downloaded from the European
Bioinformatics Institute in November 2010.

• Mus musculus (aka Mouse): 50033 proteins; 24M
amino acids; downloaded from the European
Bioinformatics Institute in November 2010.



• Caenorhabditis brenneri (aka Brenneri): 43238
proteins; 16M amino acids; Augustus gene predic-
tions downloaded from Wormbase in July 2008.

• Burkholderia cenocepacia AU 1054 (aka
AU1054): 6531 proteins; 2.6M amino acids;
downloaded from the Integrated Microbial
Genome database in September 2006.

These genomes were chosen to reflect the variety
of genomes that we expected to handle in our sys-
tem: from mammals to bacteria. Note that all these
datasets will fit comfortably in the memory of the
nodes of our cluster.

Each execution time reported in this section is the
minimum of at least three runs and is reported to the
nearest second. Execution times were obtained while
running on a dedicated cluster.

We first ran a series of experiments to study
block size, utilizing the Human, Brenneri and AU1054
genomes. Since our system is designed to BLAST one
genome against another, we studied the nine combina-
tions of those genomes BLAST-ed against each other
as query and database, while varying the block size
over the values 1K, 5K, 10K, 20K, 40K and 80K amino
acids. Figure 3 graphs the block size against the run
time for these nine BLAST runs using our system on
our 36-processor cluster. Note that there is a trough
in the graphs from block size 10K up to 40K, which is
why we settled on a block size of 20K for our system.

We focused on two additional runs, Human ver-
sus Mouse and Brenneri versus Brenneri, to judge the
overall effectiveness of our approach. These runs were
performed using a block size of 20K and all 36 proces-
sors in our cluster.

The execution time for Human versus Mouse us-
ing dynamic load balancing was 1654 seconds. We
compared this to a static load balancing approach,
where the total number of amino acids in the query
sequences were divided as evenly as possible, while re-
specting query boundaries, into 36 chunks to match
the 36 processors in our cluster. The execution time
using this static approach was 2253 seconds. In this
case, therefore, dynamic load balancing provided a 1.4
speedup over static load balancing. This indicates that
the dynamic approach could automatically adjust for
the varying processor clock rates in our cluster. Of
course, doing experiments on a dedicated cluster with
processors of varying clock rates is an effective sim-
ulation for a cluster of processors with identical (or
varying) clock rates, where the load on the processors
is dynamically changing due to other programs exe-
cuting on the cluster.

To try to judge how well we were utilizing the
cluster we also compared out dynamic load balancing
execution time to a serial execution. We ran Human

vs. Mouse serially on c3, the node with the fastest pro-
cessors in the cluster. This serial run had an execution
time of 42,756 seconds, meaning that the dynamic load
balancing approach provided a speedup of 25.9 over se-
rial execution. We need to adjust this speedup figure
to account for the varying clock rates in the cluster,
because we do not have 36 3.0 GHz processors. Instead
we have 12 2.66 GHz processors on c0, the equivalent
of 10.6 3.0 GHz processors. And we have 16 1.86 GHz
processors on c1 and c2, the equivalent of 9.9 3.0 GHz
processors. And, of course, we have 8 3.0 GHz proces-
sors on c3. This is a total of the equivalent of 28.5 3.0
GHz processors. Our actual speedup of 25.9 therefore
provides an efficiency of 25.9/28.5, 91%.

This high efficiency indicates that the dynamic
load balancing has low overhead. First, the additional
MPI message-passing time required by the dynamic
load balancing (as compared to static load balancing)
is negligible compared to the time spent in BLAST
itself. Second, the time spent repeatedly initiating
BLAST on a processor for each chunk of 20K amino
acids is small. Repeated reading of the database se-
quences is very fast due to the large amount of disk
caching that Linux systems perform. Note this is true
both for an individual processor and for a group of pro-
cessors on one node of the cluster, which will all share
the disk cache on that node. However, the initial read
of the database must be performed over the network
since we use NFS to mount a common filesystem onto
all nodes of the cluster. One portion of the overhead
is due to the time to read the database across the net-
work into the nodes of the cluster. Another portion of
the overhead is due to the presence of a master pro-
cess and a writer process, in addition to the 36 worker
processes. These two processes must be executed on
processors that are also executing worker processes.

We repeated this analysis for Brenneri versus
Brenneri, obtaining similar results. Dynamic load bal-
ancing provided a 1.3 speedup over static load balanc-
ing in this case, and a 25.0 speedup, i.e. 88% efficiency,
over serial execution on c3. The lower efficiency for
this smaller problem indicates that the overheads that
are present are relatively constant, and are reduced
when operating on larger genomes. This implies that
the overhead is largely due to the time to startup the
set of worker processes and load the sequence database
across the network to each node of the cluster.

To confirm that the load is distributed appropri-
ately among the various nodes of the cluster, we in-
strumented our code to count the number of blocks
that were processed on each node for the Brenneri ver-
sus Brenneri run using dynamic load balancing. These
numbers are presented in Table 1. Column 4 shows the
ratios of the number of blocks processed per processor
for each node of the cluster to the number of blocks



processed per processor for c3, the fastest node. Col-
umn 5 indicates the ratio of each node’s clock rate to
the clock rate of c3. Note that the number of blocks
processed on c2 matches exactly what would be pre-
dicted by the clock rates for c2 and c3, but that the
numbers of blocks processed on c0 and c1 lag a bit
from what would be predicted. This is because the
master process is on c0 and the writer process is on
c1, causing those nodes to underperform a bit relative
to c2 and c3. Taking the impact of the master process
and the writer process into account, it is clear that
blocks are being distributed to match the clock rates
of the processors on the different nodes.

Finally, we ran our dynamic load balancing for
Brenneri versus Brenneri using 8 worker processes on
just c3. This completed in 1813 seconds. We com-
pared this to running NCBI blastall using 8 threads on
c3. This completed in 2475 seconds, meaning that our
scheme that replicates the database for each worker
process provides a 1.4 speedup over blastall using one
thread for each processor, even allowing for our ap-
proach running two extra processes, the master and
the writer.

4 Conclusions

We have shown that performing sequence simi-
larity analysis in parallel using dynamic load balanc-
ing can effectively distribute the load given a cluster
with processors with varying clock rates. This im-
plies that this approach will be equally effective in the
context of fluctuating loads on the processors due to
other jobs running on the cluster. The overhead of
the dynamic load balancing seems to be low enough
that there would be no reason not to use the approach
even in a situation where the cluster is dedicated and
contains homogeneous processors.

Acknowledgements

We thank W. Kelley Thomas, director of the
Hubbard Center for Genome Studies at the Univer-
sity of New Hampshire, for motivating and assisting
this work. Support for James Jackson was provided
by NIH COBRE ARRA supplement 3P20RR018787-
07S1.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and
D. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215(3):403–410, Oct.
1990.

[2] R. Braun, K. Pedretti, T. Casavant, T. Scheetz,
C. Birkett, and C. Roberts. Parallelization of lo-
cal BLAST service on workstation clusters. Future

Generation Computer Systems, 17(6):745–754.

[3] C. Camacho, G. Coulouris, V. Avagyan, N. Ma,
J. Papadopoulos, K. Bealer, and T. Madden.
Blast+: architecture and applications. BMC

Bioinformatics, 10(1):421, 2009.

[4] A. Darling, L. Carey, and W. Feng. The design,
implementation, and evaluation of mpiBLAST. In
Proceedings of the ClusterWorld Conference and

Expo, 2003.

[5] M. Farrar. Optimizing Smith-Waterman for the
Cell broadband engine. http://farrar.michael.
googlepages.com/SW-CellBE.pdf.

[6] Message Passing Interface Forum. MPI: A

Message-Passing Interface Standard, Version 2.2.
High Performance Computing Center Stuttgart,
2009.

[7] A. Szalkowski, C. Ledergerber, P. Krhenbhl, and
C. Dessimoz. SWPS3—fast multi-threaded vec-
torized Smith-Waterman for IBM Cell/B.E. and
x86/SSE2. BMC Research Notes, 1, 2008.

[8] C. Wang and E. Lefkowitz. SS-Wrapper: a package
of wrapper applications for similarity searches on
Linux clusters. BMC Bioinformatics, 5, 2004.



node blocks per blocks per b/p relative GHz relative
node node (b/n) processor (b/p) to c3 to c3 GHz

c0 267 22.25 .76 .89
c1 128 16 .55 .62
c2 144 18 .62 .62
c3 234 29.25 1.0 1.0

Table 1: Blocks processed per node and per processor for Brenneri versus Brenneri.

Figure 1: Time to compute BLAST alignments for Human query proteins of varying lengths against all Human
proteins.



 

Figure 2: The processes and their interactions in our implementation.
 

 

 

 

 

Figure 3: Run time (minutes) versus block size (total sequence length) for nine parallel BLAST runs using various
sized genomes.


