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Learning Methods

1. Supervised Learning: Learning a function f :

Y = f(X) + ε

1.1 Regression
1.2 Classification

2. Unsupervised learning: Discover interesting properties of
data (no labels)

X1, X2, . . .

2.1 Dimensionality reduction or embedding
2.2 Clustering



Principal Components Analysis

I Reduce dimensionality
I Start with features X1 . . . Xn

I Construct fewer features Z1 . . . ZM

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp

I Weights are usually normalized (using `2 norm)

p∑
j=1

φ2j1 = 1

I Data has greatest variance along Z1



1st Principal Component
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I 1st Principal Component: Direction with the largest variance

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad)

I Is this linear?

Yes, a�er mean centering.
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I 1st Principal Component: Direction with the largest variance

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad)

I Is this linear? Yes, a�er mean centering.
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green line: 1st principal component, minimize distances to all points

Is this the same as linear regression? No, like total least squares.
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green line: 1st principal component, minimize distances to all points

Is this the same as linear regression?

No, like total least squares.
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green line: 1st principal component, minimize distances to all points

Is this the same as linear regression? No, like total least squares.



2nd Principal Component
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I 2nd Principal Component: Orthogonal to 1st component,
largest variance

Z2 = 0.544× (pop− pop)− 0.839× (ad− ad)



1st Principal Component
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Solving PCA

min
φ1,...,φp1

 1

n

n∑
i=1

 p∑
j=1

φj1xij

2
subject to

p∑
j=1

φ2j1 = 1

Solve using eigenvalue decomposition



Interpretation of 1st Principal Component
1. Direction with the largest variance
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2. Line with smallest distance to all points
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PCA Example

First principal component
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PCA Technicalities

1. Features should be centered = zero mean

2. Scale of features ma�ers

3. The direction (sign) of principal vectors is not unique

4. Proportion of Variance Explained: variance along the
dimension / total variance

5. How many principal vectors?

It depends . . .
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Partial Least Squares
I Supervised version of PCR
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Problem With High Dimensions

I Computational complexity
I Overfi�ing is a problem
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Overfi�ing with Many Variables
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Examples

1. Simple PCA: R notebook

2. MNIST PCA: https://colah.github.io/posts/
2014-10-Visualizing-MNIST/

https://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://colah.github.io/posts/2014-10-Visualizing-MNIST/

