Unsupervised Learning PCA

Marek Petrik

3/2/2017

Learning Methods

1. Supervised Learning: Learning a function f :

$$
Y=f(X)+\epsilon
$$

1.1 Regression
1.2 Classification
2. Unsupervised learning: Discover interesting properties of data (no labels)

$$
X_{1}, X_{2}, \ldots
$$

2.1 Dimensionality reduction or embedding
2.2 Clustering

Principal Components Analysis

- Reduce dimensionality
- Start with features $X_{1} \ldots X_{n}$
- Construct fewer features $Z_{1} \ldots Z_{M}$

$$
Z_{1}=\phi_{11} X_{1}+\phi_{21} X_{2}+\ldots+\phi_{p 1} X_{p}
$$

- Weights are usually normalized (using ℓ_{2} norm)

$$
\sum_{j=1}^{p} \phi_{j 1}^{2}=1
$$

- Data has greatest variance along Z_{1}

1st Principal Component

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

1st Principal Component

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

- Is this linear?

1st Principal Component

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

- Is this linear? Yes, after mean centering.

1st Principal Component

green line: 1st principal component, minimize distances to all points

1st Principal Component

green line: 1st principal component, minimize distances to all points
Is this the same as linear regression?

1st Principal Component

green line: 1st principal component, minimize distances to all points
Is this the same as linear regression? No, like total least squares.

2nd Principal Component

- 2nd Principal Component: Orthogonal to 1st component, largest variance

$$
Z_{2}=0.544 \times(\mathrm{pop}-\overline{\mathrm{pop}})-0.839 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

1st Principal Component

Solving PCA

$$
\begin{gathered}
\min _{\phi_{1}, \ldots, \phi_{p 1}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j 1} x_{i j}\right)^{2}\right\} \\
\text { subject to } \sum_{j=1}^{p} \phi_{j 1}^{2}=1
\end{gathered}
$$

Solve using eigenvalue decomposition

Interpretation of 1st Principal Component

1. Direction with the largest variance

2. Line with smallest distance to all points

PCA Example

PCA Technicalities

1. Features should be centered $=$ zero mean
2. Scale of features matters
3. The direction (sign) of principal vectors is not unique
4. Proportion of Variance Explained: variance along the dimension / total variance
5. How many principal vectors?

PCA Technicalities

1. Features should be centered $=$ zero mean
2. Scale of features matters
3. The direction (sign) of principal vectors is not unique
4. Proportion of Variance Explained: variance along the dimension / total variance
5. How many principal vectors? It depends ...

Partial Least Squares

- Supervised version of PCR

Problem With High Dimensions

- Computational complexity
- Overfitting is a problem

Overfitting with Many Variables

Number of Variables

Number of Variables

Number of Variables

Examples

1. Simple PCA: R notebook
2. MNIST PCA: https://colah.github.io/posts/ 2014-10-Visualizing-MNIST/
