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Previously in Machine Learning

I How to choose the right features if we have (too) many options

I Methods:
1. Subset selection
2. Regularization (shrinkage)
3. Dimensionality reduction (next class)



Best Subset Selection

I Want to find a subset of p features
I The subset should be small and predict well
I Example: credit ∼ rating + income + student + limit

M0 ← null model (no features);
for k = 1, 2, . . . , p do

Fit all
(
p
k

)
models that contain k features ;

Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
end
return Best ofM0,M1, . . . ,Mp according to metric above

Algorithm 1: Best Subset Selection



Achieving Scalability

I Complexity of Best Subset Selection?

I Examine all possible subsets? How many?
I O(2p)!

I Heuristic approaches:
1. Stepwise selection: Solve the problem approximately: greedy
2. Regularization: Solve a di�erent (easier) problem: relaxation
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Which Metric to Use?
M0 ← null model (no features);
for k = 1, 2, . . . , p do

Fit all
(
p
k

)
models that contain k features ;

Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
end
return Best ofM0,M1, . . . ,Mp according to metric above

Algorithm 2: Best Subset Selection

1. Direct error estimate: Cross validation, precise but
computationally intensive

2. Indirect error estimate: Mellow’s Cp:

Cp =
1

n
(RSS +2dσ̂2) where σ̂2 ≈ Var[ε]

Akaike information criterion, BIC, and many others.
Theoretical foundations

3. Interpretability Penalty: What is the cost of extra features
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Regularization

1. Stepwise selection: Solve the problem approximately

2. Regularization: Solve a di�erent (easier) problem: relaxation
I Solve a machine learning problem, but penalize solutions that

use “too much” of the features



Regularization

I Ridge regression (parameter λ), `2 penalty

min
β

RSS(β) + λ
∑
j

β2j =

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ
∑
j

β2j

I Lasso (parameter λ), `1 penalty

min
β

RSS(β) + λ
∑
j

|βj | =

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ
∑
j

|βj |

I Approximations to the `0 solution



Why Lasso Works
I Bias-variance trade-o�
I Increasing λ increases bias
I Example: all features relevant
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Regularization: Constrained Formulation

I Ridge regression (parameter λ), `2 penalty

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

subject to
∑
j

β2j ≤ s

I Lasso (parameter λ), `1 penalty

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

subject to
∑
j

|βj | ≤ s

I Approximations to the `0 solution



Lasso Solutions are Sparse

Constrained Lasso (le�) vs Constrained Ridge Regression (right)

Constraints are blue, red are contours of the objective



Today

I Dimension reduction methods
I Principal component regression
I Partial least squares

I Interpretation in high dimensions
I Bayesian view of ridge regression and lasso



Dimensionality Reduction Methods

I Di�erent approach to model selection
I We have many features: X1, X2, . . . , Xp

I Transform features to a smaller number Z1, . . . , ZM

I Find constants φjm
I New features Zm are linear combinations of Xj :

Zm =

p∑
j=1

φjmXj

I Dimension reduction: M is much smaller than p
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Using Transformed Features

I New features Zm are linear combinations of Xj :

Zm =

p∑
j=1

φjmXj

I Fit linear regression model:

yi = θ0 +

M∑
m=1

θmzim + εi

I Run plain linear regression, logistic regression, LDA, or
anything else



Recovering Coe�icients for Original Features

I Prediction using transformed features

yi = θ0 +

M∑
m=1

θmzim + εi

I New features Zm are linear combinations of Xj :

Zm =

p∑
j=1

φjmXj

I Consider prediction for data point i

M∑
m=1

θmzim

=

M∑
m=1

θm

p∑
j=1

φjmxij =

p∑
j=1

M∑
m=1

θmφjmxij =

p∑
j=1

βjxij
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Dimension Reduction

1. Reduce dimensions of features Z from X

2. Fit prediction model to compute θ

3. Compute weights for the original features β
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1. Reduce dimensions of features Z from X

2. Fit prediction model to compute θ
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How (and Why) Reduce Feaures?

1. Principal Component Analysis (PCA)

2. Partial least squares

3. Also: many other non-linear dimensionality reduction methods



Principal Component Analysis

I Unsupervised dimensionality reduction methods
I Works with n× p data matrixX (no labels)
I Correlated features: pop and ad
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1st Principal Component
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I 1st Principal Component: Direction with the largest variance

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad)

I Is this linear?

Yes, a�er mean centering.
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1st Principal Component
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Z1 = 0.839× (pop− pop) + 0.544× (ad− ad)

I Is this linear? Yes, a�er mean centering.



1st Principal Component
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Is this the same as linear regression? No, like total least squares.
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1st Principal Component
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2nd Principal Component
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I 2nd Principal Component: Orthogonal to 1st component,
largest variance

Z2 = 0.544× (pop− pop)− 0.839× (ad− ad)



1st Principal Component

−3 −2 −1 0 1 2 3

2
0

3
0

4
0

5
0

6
0

1st Principal Component

P
o

p
u

la
ti
o

n

−3 −2 −1 0 1 2 3

5
1

0
1

5
2

0
2

5
3

0

1st Principal Component

A
d

 S
p

e
n

d
in

g

−1.0 −0.5 0.0 0.5 1.0

2
0

3
0

4
0

5
0

6
0

2nd Principal Component

P
o

p
u

la
ti
o

n

−1.0 −0.5 0.0 0.5 1.0

5
1

0
1

5
2

0
2

5
3

0

2nd Principal Component

A
d

 S
p

e
n

d
in

g



Properties of PCA

I No more principal components than features

I Principal components are perpendicular

I Principal components are eigenvalues ofX>X

I Assumes normality, can break with heavy tails

I PCA depends on the scale of features



Principal Component Regression

1. Use PCA to reduce features to a small number of principal
components

2. Fit regression using principal components
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PCR vs Ridge Regression & Lasso
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I PCR selects combinations of all features (not feature selection)
I PCR is closely related to ridge regression



PCR Application
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Standardizing Features

I Regularization and PCR depend on scales of features
I Good practice is to standardize features to have same variance

x̃ij =
xij√

1
n

∑n
i=1(xij − x̄j)2

I Do not standardize features when they have the same units
I PCA needs mean-centered features

x̃ij = xij − x̄j



Partial Least Squares
I Supervised version of PCR
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High-dimensional Data

1. Predict blood pressure from DNA: n = 200, p = 500 000

2. Predicting user behavior online: n = 10 000, p = 200 000



Problem With High Dimensions

I Computational complexity
I Overfi�ing is a problem
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Overfi�ing with Many Variables
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Interpreting Feature Selection

1. Solutions may not be unique

2. Must be careful about how we report solutions

3. Just because one combination of features predicts well, does
not mean others will not


