Dimension Reduction Methods

And Bayesian Machine Learning

Marek Petrik

2/28

Previously in Machine Learning

- How to choose the right features if we have (too) many options
- Methods:

1. Subset selection
2. Regularization (shrinkage)
3. Dimensionality reduction (next class)

Best Subset Selection

- Want to find a subset of p features
- The subset should be small and predict well
- Example: credit \sim rating + income + student + limit
$\mathcal{M}_{0} \leftarrow$ null model (no features);
for $k=1,2, \ldots, p$ do
Fit all $\binom{p}{k}$ models that contain k features ;
$\mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
end
return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above
Algorithm 1: Best Subset Selection

Achieving Scalability

- Complexity of Best Subset Selection?

Achieving Scalability

- Complexity of Best Subset Selection?
- Examine all possible subsets? How many?

Achieving Scalability

- Complexity of Best Subset Selection?
- Examine all possible subsets? How many?
- $O\left(2^{p}\right)$!

Achieving Scalability

- Complexity of Best Subset Selection?
- Examine all possible subsets? How many?
- $O\left(2^{p}\right)$!
- Heuristic approaches:

1. Stepwise selection: Solve the problem approximately: greedy
2. Regularization: Solve a different (easier) problem: relaxation

Which Metric to Use?

$\mathcal{M}_{0} \leftarrow$ null model (no features);
for $k=1,2, \ldots, p$ do
Fit all $\binom{p}{k}$ models that contain k features;
$\mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
end
return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above Algorithm 2: Best Subset Selection

Which Metric to Use?

$\mathcal{M}_{0} \leftarrow$ null model (no features);
for $k=1,2, \ldots, p$ do
Fit all $\binom{p}{k}$ models that contain k features;
$\mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
end
return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above Algorithm 3: Best Subset Selection

1. Direct error estimate: Cross validation, precise but computationally intensive

Which Metric to Use?

$\mathcal{M}_{0} \leftarrow$ null model (no features);
for $k=1,2, \ldots, p$ do
Fit all $\binom{p}{k}$ models that contain k features;
$\mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
end
return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above Algorithm 4: Best Subset Selection

1. Direct error estimate: Cross validation, precise but computationally intensive
2. Indirect error estimate: Mellow's C_{p} :

$$
C_{p}=\frac{1}{n}\left(\operatorname{RSS}+2 d \hat{\sigma}^{2}\right) \text { where } \hat{\sigma}^{2} \approx \operatorname{Var}[\epsilon]
$$

Akaike information criterion, BIC, and many others.
Theoretical foundations

Which Metric to Use?

$\mathcal{M}_{0} \leftarrow$ null model (no features);
for $k=1,2, \ldots, p$ do
Fit all $\binom{p}{k}$ models that contain k features;
$\mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
end
return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above Algorithm 5: Best Subset Selection

1. Direct error estimate: Cross validation, precise but computationally intensive
2. Indirect error estimate: Mellow's C_{p} :

$$
C_{p}=\frac{1}{n}\left(\mathrm{RSS}+2 d \hat{\sigma}^{2}\right) \text { where } \hat{\sigma}^{2} \approx \operatorname{Var}[\epsilon]
$$

Akaike information criterion, BIC, and many others.
Theoretical foundations
3. Interpretability Penalty: What is the cost of extra features

Regularization

1. Stepwise selection: Solve the problem approximately
2. Regularization: Solve a different (easier) problem: relaxation

- Solve a machine learning problem, but penalize solutions that use "too much" of the features

Regularization

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j} \beta_{j}^{2}= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j} \beta_{j}^{2}
\end{gathered}
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j}\left|\beta_{j}\right|= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
\end{gathered}
$$

- Approximations to the ℓ_{0} solution

Why Lasso Works

- Bias-variance trade-off
- Increasing λ increases bias
- Example: all features relevant

Why Lasso Works

- Bias-variance trade-off
- Increasing λ increases bias
- Example: some features relevant

purple: test MSE, black: bias, green: variance dotted (ridge)

Regularization

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j} \beta_{j}^{2}= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j} \beta_{j}^{2}
\end{gathered}
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j}\left|\beta_{j}\right|= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
\end{gathered}
$$

- Approximations to the ℓ_{0} solution

Regularization: Constrained Formulation

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2} \text { subject to } \sum_{j} \beta_{j}^{2} \leq s
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2} \text { subject to } \sum_{j}\left|\beta_{j}\right| \leq s
$$

- Approximations to the ℓ_{0} solution

Lasso Solutions are Sparse

Constrained Lasso (left) vs Constrained Ridge Regression (right)

Constraints are blue, red are contours of the objective

Today

- Dimension reduction methods
- Principal component regression
- Partial least squares
- Interpretation in high dimensions
- Bayesian view of ridge regression and lasso

Dimensionality Reduction Methods

- Different approach to model selection
- We have many features: $X_{1}, X_{2}, \ldots, X_{p}$
- Transform features to a smaller number Z_{1}, \ldots, Z_{M}

Dimensionality Reduction Methods

- Different approach to model selection
- We have many features: $X_{1}, X_{2}, \ldots, X_{p}$
- Transform features to a smaller number Z_{1}, \ldots, Z_{M}
- Find constants $\phi_{j m}$
- New features Z_{m} are linear combinations of X_{j} :

$$
Z_{m}=\sum_{j=1}^{p} \phi_{j m} X_{j}
$$

Dimensionality Reduction Methods

- Different approach to model selection
- We have many features: $X_{1}, X_{2}, \ldots, X_{p}$
- Transform features to a smaller number Z_{1}, \ldots, Z_{M}
- Find constants $\phi_{j m}$
- New features Z_{m} are linear combinations of X_{j} :

$$
Z_{m}=\sum_{j=1}^{p} \phi_{j m} X_{j}
$$

- Dimension reduction: M is much smaller than p

Using Transformed Features

- New features Z_{m} are linear combinations of X_{j} :

$$
Z_{m}=\sum_{j=1}^{p} \phi_{j m} X_{j}
$$

- Fit linear regression model:

$$
y_{i}=\theta_{0}+\sum_{m=1}^{M} \theta_{m} z_{i m}+\epsilon_{i}
$$

- Run plain linear regression, logistic regression, LDA, or anything else

Recovering Coefficients for Original Features

- Prediction using transformed features

$$
y_{i}=\theta_{0}+\sum_{m=1}^{M} \theta_{m} z_{i m}+\epsilon_{i}
$$

- New features Z_{m} are linear combinations of X_{j} :

$$
Z_{m}=\sum_{j=1}^{p} \phi_{j m} X_{j}
$$

- Consider prediction for data point i

$$
\sum_{m=1}^{M} \theta_{m} z_{i m}
$$

Recovering Coefficients for Original Features

- Prediction using transformed features

$$
y_{i}=\theta_{0}+\sum_{m=1}^{M} \theta_{m} z_{i m}+\epsilon_{i}
$$

- New features Z_{m} are linear combinations of X_{j} :

$$
Z_{m}=\sum_{j=1}^{p} \phi_{j m} X_{j}
$$

- Consider prediction for data point i

$$
\sum_{m=1}^{M} \theta_{m} z_{i m}=\sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \phi_{j m} x_{i j}
$$

Recovering Coefficients for Original Features

- Prediction using transformed features

$$
y_{i}=\theta_{0}+\sum_{m=1}^{M} \theta_{m} z_{i m}+\epsilon_{i}
$$

- New features Z_{m} are linear combinations of X_{j} :

$$
Z_{m}=\sum_{j=1}^{p} \phi_{j m} X_{j}
$$

- Consider prediction for data point i

$$
\sum_{m=1}^{M} \theta_{m} z_{i m}=\sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \phi_{j m} x_{i j}=\sum_{j=1}^{p} \sum_{m=1}^{M} \theta_{m} \phi_{j m} x_{i j}
$$

Recovering Coefficients for Original Features

- Prediction using transformed features

$$
y_{i}=\theta_{0}+\sum_{m=1}^{M} \theta_{m} z_{i m}+\epsilon_{i}
$$

- New features Z_{m} are linear combinations of X_{j} :

$$
Z_{m}=\sum_{j=1}^{p} \phi_{j m} X_{j}
$$

- Consider prediction for data point i

$$
\sum_{m=1}^{M} \theta_{m} z_{i m}=\sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \phi_{j m} x_{i j}=\sum_{j=1}^{p} \sum_{m=1}^{M} \theta_{m} \phi_{j m} x_{i j}=\sum_{j=1}^{p} \beta_{j} x_{i j}
$$

Dimension Reduction

1. Reduce dimensions of features Z from X
2. Fit prediction model to compute θ
3. Compute weights for the original features β

Dimension Reduction

1. Reduce dimensions of features Z from X
2. Fit prediction model to compute θ
3. Compute weights for the original features β

Dimension Reduction

1. Reduce dimensions of features Z from X
2. Fit prediction model to compute θ
3. Compute weights for the original features β

How (and Why) Reduce Feaures?

1. Principal Component Analysis (PCA)
2. Partial least squares
3. Also: many other non-linear dimensionality reduction methods

Principal Component Analysis

- Unsupervised dimensionality reduction methods
- Works with $n \times p$ data matrix \mathbf{X} (no labels)
- Correlated features: pop and ad

1st Principal Component

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

1st Principal Component

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

- Is this linear?

1st Principal Component

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

- Is this linear? Yes, after mean centering.

1st Principal Component

green line: 1st principal component, minimize distances to all points

1st Principal Component

green line: 1st principal component, minimize distances to all points
Is this the same as linear regression?

1st Principal Component

green line: 1st principal component, minimize distances to all points
Is this the same as linear regression? No, like total least squares.

2nd Principal Component

- 2nd Principal Component: Orthogonal to 1st component, largest variance

$$
Z_{2}=0.544 \times(\mathrm{pop}-\overline{\mathrm{pop}})-0.839 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

1st Principal Component

Properties of PCA

- No more principal components than features
- Principal components are perpendicular
- Principal components are eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$
- Assumes normality, can break with heavy tails
- PCA depends on the scale of features

Principal Component Regression

1. Use PCA to reduce features to a small number of principal components
2. Fit regression using principal components

PCR vs Ridge Regression \& Lasso

Ridge Regression and Lasso

- PCR selects combinations of all features (not feature selection)
- PCR is closely related to ridge regression

PCR Application

Standardizing Features

- Regularization and PCR depend on scales of features
- Good practice is to standardize features to have same variance

$$
\tilde{x}_{i j}=\frac{x_{i j}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)^{2}}}
$$

- Do not standardize features when they have the same units
- PCA needs mean-centered features

$$
\tilde{x}_{i j}=x_{i j}-\bar{x}_{j}
$$

Partial Least Squares

- Supervised version of PCR

High-dimensional Data

1. Predict blood pressure from DNA: $n=200, p=500000$
2. Predicting user behavior online: $n=10000, p=200000$

Problem With High Dimensions

- Computational complexity
- Overfitting is a problem

Overfitting with Many Variables

Number of Variables

Number of Variables

Number of Variables

Interpreting Feature Selection

1. Solutions may not be unique
2. Must be careful about how we report solutions
3. Just because one combination of features predicts well, does not mean others will not
