Model Selection and Regularization

Regularization

Marek Petrik

2/23/2017

Last Time

- Successfully using basic machine learning methods
- Problems:

1. How well is the machine learning method doing
2. Which method is best for my problem?
3. How many features (and which ones) to use?
4. What is the uncertainty in the learned parameters?

Last Time

- Successfully using basic machine learning methods
- Problems:

1. How well is the machine learning method doing
2. Which method is best for my problem?
3. How many features (and which ones) to use?
4. What is the uncertainty in the learned parameters?

- Methods:

1. Validation set
2. Leave one out cross-validation
3. k-fold cross validation
4. Bootstrapping

Solution 1: Validation Set

- Just evaluate how well the method works on the test set
- Randomly split data to:

1. Training set: about half of all data
2. Validation set (AKA hold-out set): remaining half

123

Solution 1: Validation Set

- Just evaluate how well the method works on the test set
- Randomly split data to:

1. Training set: about half of all data
2. Validation set (AKA hold-out set): remaining half

- Choose the number of features/representation based on minimizing error on validation set

Solution 2: Leave-one-out

- Addresses problems with validation set
- Split the data set into 2 parts:

1. Training: Size $n-1$
2. Validation: Size 1

- Repeat n times: to get n learning problems

n

123

Solution 3: k-fold Cross-validation

- Hybrid between validation set and LOO
- Split training set into k subsets

1. Training set: $n-n / k$
2. Test set: ${ }^{1 / k} n$

- k learning problems

123	n
11765	47
11765	47
11765	47
11765	47
11765	47

- Cross-validation error:

$$
\mathrm{CV}_{(k)}=\frac{1}{k} \sum_{i=1}^{k} \mathrm{MSE}_{i}
$$

Limits of Cross-validation

- Successfully using basic machine learning methods
- Cross-validation is not the end of the story

Limits of Cross-validation

- Successfully using basic machine learning methods
- Cross-validation is not the end of the story
- Feasible to test options:

1. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power
2. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power 2
3. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power $^{2}+\beta_{3}$ power 3
4. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power $^{2}+\beta_{3}$ power $^{3}+\beta_{4}$ power 4
5. ...

Limits of Cross-validation

- Successfully using basic machine learning methods
- Cross-validation is not the end of the story
- Feasible to test options:

1. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power
2. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power 2
3. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power $^{2}+\beta_{3}$ power 3
4. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power $^{2}+\beta_{3}$ power $^{3}+\beta_{4}$ power 4
5. ...

- This is just one feature!
- What is we add displacement, weight, topspeed, wheelsize, . . .?

Limits of Cross-validation

- Successfully using basic machine learning methods
- Cross-validation is not the end of the story
- Feasible to test options:

1. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power
2. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power 2
3. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power $^{2}+\beta_{3}$ power 3
4. $\mathrm{mpg}=\beta_{0}+\beta_{1}$ power $+\beta_{2}$ power $^{2}+\beta_{3}$ power $^{3}+\beta_{4}$ power 4
5. ...

- This is just one feature!
- What is we add displacement, weight, topspeed, wheelsize, . . .?
- Exponential growth!

Today

- How to choose the right features if we have (too) many options
- Methods:

1. Subset selection
2. Regularization (shrinkage)
3. Dimensionality reduction (next class)

Importance of Feature Engineering

- MNIST handwritten digit recognition (see R notebook)
- Example results: see http://yann.lecun.com/exdb/mnist/

Why Few Features

1. Improve prediction accuracy: reduce overfitting
2. Improve interpretability: small number of coefficients are easier to understand

Best Subset Selection

- Want to find a subset of p features
- The subset should be small and predict well
- Example: credit \sim rating + income + student + limit

```
Algorithm 1: Best Subset Selection
\(1 \mathcal{M}_{0} \leftarrow\) null model (no features);
2 for \(k=1,2, \ldots, p\) do
3 Fit all \(\binom{p}{k}\) models that contain \(k\) features ;
        \(\mathcal{M}_{k} \leftarrow\) best of \(\binom{p}{k}\) models according to a metric (CV error, \(R^{2}\),
        etc)
5 end
6 return Best of \(\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}\) according to metric above
```


Achieving Scalability

- Complexity of Best Subset Selection?

Achieving Scalability

- Complexity of Best Subset Selection?
- Examine all possible subsets? How many?

Achieving Scalability

- Complexity of Best Subset Selection?
- Examine all possible subsets? How many?
- $O\left(2^{p}\right)$!

Achieving Scalability

- Complexity of Best Subset Selection?
- Examine all possible subsets? How many?
- $O\left(2^{p}\right)$!
- Heuristic approaches:

1. Stepwise selection: Solve the problem approximately: greedy
2. Regularization: Solve a different (easier) problem: relaxation

Forward Stepwise Selection

- Greedy approximation of Best Subset Selection
- Iteratively add more features
- Example: credit \sim rating + income + student + limit

Algorithm 2: Forward Stepwise Selection

$1 \mathcal{M}_{0} \leftarrow$ null model (no features);
2 for $k=0,1,2, \ldots, p-1$ do
$3 \quad$ Fit all $p-k$ models that augment \mathcal{M}_{k} by one new feature; R^{2}, etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

Forward Stepwise Selection

- Greedy approximation of Best Subset Selection
- Iteratively add more features
- Example: credit \sim rating + income + student + limit

Algorithm 3: Forward Stepwise Selection

$1 \mathcal{M}_{0} \leftarrow$ null model (no features);
2 for $k=0,1,2, \ldots, p-1$ do
$3 \quad$ Fit all $p-k$ models that augment \mathcal{M}_{k} by one new feature;

5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

- Complexity?

Forward Stepwise Selection

- Greedy approximation of Best Subset Selection
- Iteratively add more features
- Example: credit \sim rating + income + student + limit

Algorithm 4: Forward Stepwise Selection

$1 \mathcal{M}_{0} \leftarrow$ null model (no features);
2 for $k=0,1,2, \ldots, p-1$ do
$3 \quad$ Fit all $p-k$ models that augment \mathcal{M}_{k} by one new feature;

5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

- Complexity? $O\left(p^{2}\right)$

Backward Stepwise Selection

- Greedy approximation of Best Subset Selection
- Iteratively remove features
- Example: credit \sim rating + income + student + limit

Algorithm 5: Forward Stepwise Selection

$1 \mathcal{M}_{p} \leftarrow$ full model (all features);
2 for $k=p, p-1, \ldots, 1$ do
$3 \quad$ Fit all k models that remove one feature from \mathcal{M}_{k};
$4 \quad \mathcal{M}_{k-1} \leftarrow$ best of k models according to a metric (CV error, R^{2}, etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

Backward Stepwise Selection

- Greedy approximation of Best Subset Selection
- Iteratively remove features
- Example: credit \sim rating + income + student + limit

Algorithm 6: Forward Stepwise Selection

$1 \mathcal{M}_{p} \leftarrow$ full model (all features);
2 for $k=p, p-1, \ldots, 1$ do
$3 \quad$ Fit all k models that remove one feature from \mathcal{M}_{k};
$4 \quad \mathcal{M}_{k-1} \leftarrow$ best of k models according to a metric (CV error, R^{2}, etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

- Complexity?

Backward Stepwise Selection

- Greedy approximation of Best Subset Selection
- Iteratively remove features
- Example: credit \sim rating + income + student + limit

Algorithm 7: Forward Stepwise Selection

$1 \mathcal{M}_{p} \leftarrow$ full model (all features);
2 for $k=p, p-1, \ldots, 1$ do
$3 \quad$ Fit all k models that remove one feature from \mathcal{M}_{k};
$4 \quad \mathcal{M}_{k-1} \leftarrow$ best of k models according to a metric (CV error, R^{2}, etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

- Complexity? $O\left(p^{2}\right)$

Which Metric to Use?

Algorithm 8: Best Subset Selection
$1 \mathcal{M}_{0} \leftarrow$ null model (no features);
2 for $k=1,2, \ldots, p$ do
3 Fit all $\binom{p}{k}$ models that contain k features ;
$4 \quad \mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

Which Metric to Use?

Algorithm 9: Best Subset Selection
$1 \mathcal{M}_{0} \leftarrow$ null model (no features);
2 for $k=1,2, \ldots, p$ do
3 Fit all $\binom{p}{k}$ models that contain k features ; etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

1. Direct error estimate: Cross validation, precise but computationally intensive

Which Metric to Use?

Algorithm 10: Best Subset Selection
$1 \mathcal{M}_{0} \leftarrow$ null model (no features);
2 for $k=1,2, \ldots, p$ do
3 Fit all $\binom{p}{k}$ models that contain k features;
4
$\mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

1. Direct error estimate: Cross validation, precise but computationally intensive
2. Indirect error estimate: Mellow's C_{p} :

$$
C_{p}=\frac{1}{n}\left(\mathrm{RSS}+2 d \hat{\sigma}^{2}\right) \text { where } \hat{\sigma}^{2} \approx \operatorname{Var}[\epsilon]
$$

Akaike information criterion, BIC, and many others.
Theoretical foundations

Which Metric to Use?

Algorithm 11: Best Subset Selection
$1 \mathcal{M}_{0} \leftarrow$ null model (no features);
2 for $k=1,2, \ldots, p$ do
3 Fit all $\binom{p}{k}$ models that contain k features ; etc)
5 end
6 return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above

1. Direct error estimate: Cross validation, precise but computationally intensive
2. Indirect error estimate: Mellow's C_{p} :

$$
C_{p}=\frac{1}{n}\left(\operatorname{RSS}+2 d \hat{\sigma}^{2}\right) \text { where } \hat{\sigma}^{2} \approx \operatorname{Var}[\epsilon]
$$

Akaike information criterion, BIC, and many others.
Theoretical foundations
3. Interpretability Penalty: What is the cost of extra features

Regularization

1. Stepwise selection: Solve the problem approximately
2. Regularization: Solve a different (easier) problem: relaxation

- Solve a machine learning problem, but penalize solutions that use "too much" of the features

Recall: Linear Regression

- With one feature:

$$
Y \approx \beta_{0}+\beta_{1} X \quad Y=\beta_{0}+\beta_{1} X+\epsilon
$$

- Prediction:

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
$$

- Errors (y_{i} are true values):

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

Recall: Solving Linear Regression

- Errors (y_{i} are true values):

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

- Residual Sum of Squares

$$
\mathrm{RSS}=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+\cdots+e_{n}^{2}=\sum_{i=1}^{n} e_{i}^{2}
$$

- Equivalently:

$$
\mathrm{RSS}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
$$

- Minimize RSS (for p features, $x_{i j}: i$ th sample, j th feature)

$$
\min _{\beta} \operatorname{RSS}(\beta)=\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}
$$

Regularization

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j} \beta_{j}^{2}= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j} \beta_{j}^{2}
\end{gathered}
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j}\left|\beta_{j}\right|= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
\end{gathered}
$$

- Approximations to the ℓ_{0} solution

Ridge Regression: Coefficient Values

Why Ridge Regression Works

- Bias-variance trade-off
- Increasing λ increases bias

purple: test MSE, black: bias, green: variance

Regularization

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j} \beta_{j}^{2}= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j} \beta_{j}^{2}
\end{gathered}
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j}\left|\beta_{j}\right|= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
\end{gathered}
$$

- Approximations to the ℓ_{0} solution

Lasso: Coefficient Values

Why Lasso Works

- Bias-variance trade-off
- Increasing λ increases bias
- Example: all features relevant

Why Lasso Works

- Bias-variance trade-off
- Increasing λ increases bias
- Example: some features relevant

purple: test MSE, black: bias, green: variance dotted (ridge)

Regularization

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j} \beta_{j}^{2}= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j} \beta_{j}^{2}
\end{gathered}
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j}\left|\beta_{j}\right|= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
\end{gathered}
$$

- Approximations to the ℓ_{0} solution

Regularization: Constrained Formulation

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2} \text { subject to } \sum_{j} \beta_{j}^{2} \leq s
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2} \text { subject to } \sum_{j}\left|\beta_{j}\right| \leq s
$$

- Approximations to the ℓ_{0} solution

Lasso Solutions are Sparse

Constrained Lasso (left) vs Constrained Ridge Regression (right)

Constraints are blue, red are contours of the objective

How to Choose λ ?

How to Choose λ ?

- Cross-validation

