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Last Time

I Successfully using basic machine learning methods
I Problems:

1. How well is the machine learning method doing
2. Which method is best for my problem?
3. How many features (and which ones) to use?
4. What is the uncertainty in the learned parameters?

I Methods:
1. Validation set
2. Leave one out cross-validation
3. k-fold cross validation
4. Bootstrapping
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Solution 1: Validation Set

I Just evaluate how well the method works on the test set
I Randomly split data to:

1. Training set: about half of all data
2. Validation set (AKA hold-out set): remaining half
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I Choose the number of features/representation based on
minimizing error on validation set
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Solution 2: Leave-one-out

I Addresses problems with validation set
I Split the data set into 2 parts:

1. Training: Size n− 1
2. Validation: Size 1

I Repeat n times: to get n learning problems
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Solution 3: k-fold Cross-validation
I Hybrid between validation set and LOO
I Split training set into k subsets

1. Training set: n− n/k
2. Test set: 1/kn

I k learning problems
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I Cross-validation error:

CV(k) =
1

k

k∑
i=1

MSEi



Limits of Cross-validation

I Successfully using basic machine learning methods
I Cross-validation is not the end of the story

I Feasible to test options:
1. mpg = β0 + β1 power
2. mpg = β0 + β1 power + β2 power

2

3. mpg = β0 + β1 power + β2 power
2 + β3 power

3

4. mpg = β0 + β1 power + β2 power
2 + β3 power

3 + β4 power
4

5. . . .

I This is just one feature!
I What is we add displacement, weight, topspeed, wheelsize, . . .?
I Exponential growth!
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Today

I How to choose the right features if we have (too) many options

I Methods:
1. Subset selection
2. Regularization (shrinkage)
3. Dimensionality reduction (next class)



Importance of Feature Engineering

I MNIST handwri�en digit recognition (see R notebook)

I Example results: see
http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/


Why Few Features

1. Improve prediction accuracy: reduce overfi�ing

2. Improve interpretability: small number of coe�icients are
easier to understand



Best Subset Selection

I Want to find a subset of p features
I The subset should be small and predict well
I Example: credit ∼ rating + income+ student+ limit

Algorithm 1: Best Subset Selection
1 M0 ← null model (no features);
2 for k = 1, 2, . . . , p do
3 Fit all

(
p
k

)
models that contain k features ;

4 Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
5 end
6 return Best ofM0,M1, . . . ,Mp according to metric above



Achieving Scalability

I Complexity of Best Subset Selection?

I Examine all possible subsets? How many?
I O(2p)!

I Heuristic approaches:
1. Stepwise selection: Solve the problem approximately: greedy
2. Regularization: Solve a di�erent (easier) problem: relaxation
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Forward Stepwise Selection

I Greedy approximation of Best Subset Selection
I Iteratively add more features
I Example: credit ∼ rating + income+ student+ limit

Algorithm 2: Forward Stepwise Selection

1 M0 ← null model (no features) ;
2 for k = 0, 1, 2, . . . , p− 1 do
3 Fit all p− k models that augmentMk by one new feature ;
4 Mk+1 ← best of p− k models according to a metric (CV error,

R2, etc)
5 end
6 return Best ofM0,M1, . . . ,Mp according to metric above

I Complexity?

O(p2)
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Backward Stepwise Selection

I Greedy approximation of Best Subset Selection
I Iteratively remove features
I Example: credit ∼ rating + income+ student+ limit

Algorithm 5: Forward Stepwise Selection

1 Mp ← full model (all features) ;
2 for k = p, p− 1, . . . , 1 do
3 Fit all k models that remove one feature fromMk ;
4 Mk−1 ← best of k models according to a metric (CV error, R2,

etc)
5 end
6 return Best ofM0,M1, . . . ,Mp according to metric above

I Complexity?

O(p2)
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Which Metric to Use?
Algorithm 8: Best Subset Selection

1 M0 ← null model (no features);
2 for k = 1, 2, . . . , p do
3 Fit all

(
p
k

)
models that contain k features ;

4 Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
5 end
6 return Best ofM0,M1, . . . ,Mp according to metric above

1. Direct error estimate: Cross validation, precise but
computationally intensive

2. Indirect error estimate: Mellow’s Cp:

Cp =
1

n
(RSS+2dσ̂2) where σ̂2 ≈ Var[ε]

Akaike information criterion, BIC, and many others.
Theoretical foundations

3. Interpretability Penalty: What is the cost of extra features



Which Metric to Use?
Algorithm 9: Best Subset Selection

1 M0 ← null model (no features);
2 for k = 1, 2, . . . , p do
3 Fit all

(
p
k

)
models that contain k features ;

4 Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
5 end
6 return Best ofM0,M1, . . . ,Mp according to metric above

1. Direct error estimate: Cross validation, precise but
computationally intensive

2. Indirect error estimate: Mellow’s Cp:

Cp =
1

n
(RSS+2dσ̂2) where σ̂2 ≈ Var[ε]

Akaike information criterion, BIC, and many others.
Theoretical foundations

3. Interpretability Penalty: What is the cost of extra features



Which Metric to Use?
Algorithm 10: Best Subset Selection

1 M0 ← null model (no features);
2 for k = 1, 2, . . . , p do
3 Fit all

(
p
k

)
models that contain k features ;

4 Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
5 end
6 return Best ofM0,M1, . . . ,Mp according to metric above

1. Direct error estimate: Cross validation, precise but
computationally intensive

2. Indirect error estimate: Mellow’s Cp:

Cp =
1

n
(RSS+2dσ̂2) where σ̂2 ≈ Var[ε]

Akaike information criterion, BIC, and many others.
Theoretical foundations

3. Interpretability Penalty: What is the cost of extra features



Which Metric to Use?
Algorithm 11: Best Subset Selection

1 M0 ← null model (no features);
2 for k = 1, 2, . . . , p do
3 Fit all

(
p
k

)
models that contain k features ;

4 Mk ← best of
(
p
k

)
models according to a metric (CV error, R2,

etc)
5 end
6 return Best ofM0,M1, . . . ,Mp according to metric above

1. Direct error estimate: Cross validation, precise but
computationally intensive

2. Indirect error estimate: Mellow’s Cp:

Cp =
1

n
(RSS+2dσ̂2) where σ̂2 ≈ Var[ε]

Akaike information criterion, BIC, and many others.
Theoretical foundations

3. Interpretability Penalty: What is the cost of extra features



Regularization

1. Stepwise selection: Solve the problem approximately

2. Regularization: Solve a di�erent (easier) problem: relaxation
I Solve a machine learning problem, but penalize solutions that

use “too much” of the features



Recall: Linear Regression
I With one feature:

Y ≈ β0 + β1X Y = β0 + β1X + ε

I Prediction:
ŷi = β̂0 + β̂1xi

I Errors (yi are true values):

ei = yi − ŷi
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Recall: Solving Linear Regression
I Errors (yi are true values):

ei = yi − ŷi
I Residual Sum of Squares

RSS = e21 + e22 + e23 + · · ·+ e2n =

n∑
i=1

e2i

I Equivalently:

RSS =

n∑
i=1

(yi − β̂0 − β̂1xi)2

I Minimize RSS (for p features, xij : ith sample, jth feature)

min
β

RSS(β) = min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2



Regularization

I Ridge regression (parameter λ), `2 penalty

min
β

RSS(β) + λ
∑
j

β2j =

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ
∑
j

β2j

I Lasso (parameter λ), `1 penalty

min
β

RSS(β) + λ
∑
j

|βj | =

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ
∑
j

|βj |

I Approximations to the `0 solution



Ridge Regression: Coe�icient Values
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Why Ridge Regression Works

I Bias-variance trade-o�
I Increasing λ increases bias
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Lasso: Coe�icient Values
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Why Lasso Works
I Bias-variance trade-o�
I Increasing λ increases bias
I Example: all features relevant
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Regularization

I Ridge regression (parameter λ), `2 penalty
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Regularization: Constrained Formulation

I Ridge regression (parameter λ), `2 penalty

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

subject to
∑
j

β2j ≤ s

I Lasso (parameter λ), `1 penalty

min
β

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

subject to
∑
j

|βj | ≤ s

I Approximations to the `0 solution



Lasso Solutions are Sparse

Constrained Lasso (le�) vs Constrained Ridge Regression (right)

Constraints are blue, red are contours of the objective



How to Choose λ?

I Cross-validation
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