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Last Class

1. Basic machine learning framework

Y = f(X)

2. Prediction vs inference: predict Y vs understand f

3. Parametric vs non-parametric: linear regression vs k-NN

4. Classification vs regressions: k-NN vs linear regression

5. Why we need to have a test set: overfi�ing



What is Machine Learning
I Discover unknown function f :

Y = f(X)

I X = set of features, or inputs
I Y = target, or response
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Errors in Machine Learning: World is Noisy

I World is too complex to model precisely
I Many features are not captured in data sets
I Need to allow for errors ε in f :

Y = f(X) + ε



How Good are Predictions?

I Learned function f̂
I Test data: (x1, y1), (x2, y2), . . .

I Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2

I This is the estimate of:

MSE = E[(Y − f̂(X))2] =
1

|Ω|
∑
ω∈Ω

(Y (ω)− f̂(X(ω)))2

I Important: Samples xi are i.i.d.



Do We Need Test Data?
I Why not just test on the training data?
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I Flexibility is the degree of polynomial being fit
I Gray line: training error, red line: testing error



Types of Function f

Regression: continuous target

f : X → R
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Classification: discrete target

f : X → {1, 2, 3, . . . , k}
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Bias-Variance Decomposition

Y = f(X) + ε

Mean Squared Error can be decomposed as:

MSE = E(Y − f̂(X))2 = Var(f̂(X))︸ ︷︷ ︸
Variance

+ (E(f̂(X)))2︸ ︷︷ ︸
Bias

+ Var(ε)

I Bias: How well would method work with infinite data
I Variance: How much does output change with di�erent data

sets



Today

I Basics of linear regression
I Why linear regression
I How to compute it
I Why compute it



Simple Linear Regression
I We have only one feature

Y ≈ β0 + β1X Y = β0 + β1X + ε

I Example:
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How To Estimate Coe�icients
I No line that will have no errors on data xi
I Prediction:

ŷi = β̂0 + β̂1xi

I Errors (yi are true values):

ei = yi − ŷi
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Residual Sum of Squares

I Residual Sum of Squares

RSS = e2
1 + e2

2 + e2
3 + · · ·+ e2

n =

n∑
i=1

e2
i

I Equivalently:

RSS =

n∑
i=1

(yi − β̂0 − β̂1xi)
2



Minimizing Residual Sum of Squares

min
β0,β1

RSS = min
β0,β1

n∑
i=1

e2
i = min

β0,β1

n∑
i=1

(yi − β0 − β1xi)
2

R
S

S
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Minimizing Residual Sum of Squares

min
β0,β1

RSS = min
β0,β1

n∑
i=1

e2
i = min

β0,β1

n∑
i=1

(yi − β0 − β1xi)
2
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Solving for Minimal RSS

min
β0,β1

n∑
i=1

(yi − β0 − β1xi)
2

I RSS is a convex function of β0, β1

I Minimum achieved when (recall the chain rule):

∂ RSS

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi) = 0

∂ RSS

∂β1
= −2

n∑
i=1

xi(yi − β0 − β1xi) = 0



Linear Regression Coe�icients

min
β0,β1

n∑
i=1

(yi − β0 − β1xi)
2

Solution:

β0 = ȳ − β1x̄

β1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1 xi(yi − ȳ)∑n
i=1 xi(xi − x̄)

where

x̄ =
1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi



Why Minimize RSS

1. Maximize likelihood when Y = β0 + β1X + ε when
ε ∼ N (0, σ2)

2. Best Linear Unbiased Estimator (BLUE): Gauss-Markov
Theorem (ESL 3.2.2)

3. It is convenient: can be solved in closed form
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Bias in Estimation

I Assume a true value µ?

I Estimate µ is unbiased when E[µ] = µ?

I Standard mean estimate is unbiased (e.g. X ∼ N (0, 1)):

E

[
1

n

n∑
i=1

Xi

]
= 0

I Standard variance estimate is biased (e.g. X ∼ N (0, 1)):

E

[
1

n

n∑
i=1

(Xi − X̄)2

]
6= 1



Linear Regression is Unbiased
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Solution of Linear Regression
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How Good is the Fit

I How well is linear regression predicting the training data?
I Can we be sure that TV advertising really influences the sales?
I What is the probability that we just got lucky?



R2 Statistic

R2 = 1− RSS

TSS
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

I RSS - residual sum of squares, TSS - total sum of squares
I R2 measures the goodness of the fit as a proportion
I Proportion of data variance explained by the model
I Extreme values:

0: Model does not explain data
1: Model explains data perfectly



Example: TV Impact on Sales
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Example: TV Impact on Sales
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Example: Radio Impact on Sales
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Example: Radio Impact on Sales
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Example: Newspaper Impact on Sales
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Example: Newspaper Impact on Sales
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Correlation Coe�icient

I Measures dependence between two random variables X and Y

r =
Cov(X,Y )√

Var(X)
√

Var(Y )

I Correlation coe�icient r is between [−1, 1]

0: Variables are not related
1: Variables are perfectly related (same)
−1: Variables are negatively related (di�erent)

I R2 = r2
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Hypothesis Testing

I Null hypothesis H0:

There is no relationship between X and Y

β1 = 0

I Alternative hypothesis H1:

There is some relationship between X and Y

β1 6= 0

I Seek to reject hypothesis H0 with small “probability” (p-value)
of making a mistake

I Important topic, but beyond the scope of the course



Multiple Linear Regression

I Usually more than one feature is available

sales = β0 + β1 × TV + β2 × radio + β3 × newspaper + ε

I In general:

Y = β0 +

p∑
j=1

βjXj



Multiple Linear Regression

X1

X2

Y



Estimating Coe�icients

I Prediction:

ŷi = β̂0 +

p∑
j=1

β̂jxij

I Errors (yi are true values):

ei = yi − ŷi

I Residual Sum of Squares

RSS = e2
1 + e2

2 + e2
3 + · · ·+ e2

n =

n∑
i=1

e2
i

I How to minimize RSS? Linear algebra!



Inference from Linear Regression

1. Are predictors X1, X2, . . . , Xp really predicting Y ?

2. Is only a subset of predictors useful?

3. How well does linear model fit data?

4. What Y should be predict and how accurate is it?



Inference 1

“Are predictors X1, X2, . . . , Xp really predicting Y ?”

I Null hypothesis H0:

There is no relationship between X and Y

β1 = 0

I Alternative hypothesis H1:

There is some relationship between X and Y

β1 6= 0

I Seek to reject hypothesis H0 with small “probability” (p-value)
of making a mistake

I See ISL 3.2.2 on how to compute F-statistic and reject H0



Inference 2

“Is only a subset of predictors useful?”

I Compare prediction accuracy with only a subset of features

I RSS always decreases with more features!
I Other measures control for number of variables:

1. Mallows Cp

2. Akaike information criterion
3. Bayesian information criterion
4. Adjusted R2

I Testing all subsets of features is impractical: 2p options!
I More on how to do this later
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Inference 3

“How well does linear model fit data?”

I R2 also always increases with more features (like RSS)
I Is the model linear? Plot it:

Sales

Radio

TV

I More on this later



Inference 4

“What Y should be predict and how accurate is it?”

I The linear model is used to make predictions:

ypredicted = β̂0 + β̂1 xnew

I Can also predict a confidence interval (based on estimate on ε):

I Example: Spent $100 000 on TV and $20 000 on Radio
advertising

I Confidence interval: predict f(X) (the average response):

f(x) ∈ [10.985, 11, 528]

I Prediction interval: predict f(X) + ε (response + possible
noise)

f(x) ∈ [7.930, 14.580]
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R notebook


