Reinforcement Learning Machine Learning and Optimization

Marek Petrik

4/20/2017

Branches of Machine Learning

Supervised Learning

Branches of Machine Learning

- Supervised Learning
- Unsupervised Learning

Branches of Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning (maybe): Machine learning + decisions

AlphaGo: Computers Beat Humans in Go

Photograph by Saran Poroong-Getty Images/iStockphoto

Wumpus World

Pit	Stench Breeze	Breeze	Pit
Stench Breeze	S	Stench Glitter	Breeze
	Stench	Breeze	Pit
×			Breeze

Figure 1

• Transition probabilities: P

MDP Objective: Discounted Infinite Horizon

Solution Policy π maps *states* \rightarrow *actions*

MDP Objective: Discounted Infinite Horizon

Solution Policy π maps *states* \rightarrow *actions*

Return for discount factor: $\gamma \in [0, 1]$

$$\rho(\boldsymbol{\pi}) = \mathbf{E}_{\alpha} \left[\sum_{t=0}^{\infty} \gamma^t \operatorname{reward}_t \right]$$

MDP Objective: Discounted Infinite Horizon

Solution Policy π maps *states* \rightarrow *actions*

Return for discount factor: $\gamma \in [0, 1]$

$$\rho(\boldsymbol{\pi}) = \mathbf{E}_{\alpha} \left[\sum_{t=0}^{\infty} \gamma^t \operatorname{reward}_t \right]$$

Optimal policy

$$\pi^* \in \arg\max_{\pi} \rho(\pi)$$

Balancing Inverted Pendulum

- Balance a ball on top of the pole
- Can apply force on the cart
- Uncertainty in magnitude of force
- Decide when and how much force to apply

Energy Storage

- Decide how much to charge and discharge
- Based on stochastic energy prices
- **Solution**: Policy:
 - Buy low and sell high

Energy Storage

- Decide how much to charge and discharge
- Based on stochastic energy prices
- **Solution**: Policy:
 - Buy low and sell high
 - But how much?

MDP Models

Energy storage

- States: Battery charge level, capacity, energy price
- Actions: Charge or discharge the battery
- Transitions: Battery dynamics and stochastic energy price
- Reward: Money earned

MDP Models

- Inverted pendulum
 - States: Angle and velocity of pendulum
 - Actions: Magnitude and direction of force
 - Transitions: Pendulum dynamics (differential equations)
 - Reward: -1 when falls 0 otherwise

Value Function of π

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_{s,a} \Big(r_a(s) + \gamma \sum_{s' \in \mathcal{S}} P_a(s, s') v_{\pi}(s') \Big)$$

Value Function of π

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_{s,a} \Big(r_a(s) + \gamma \sum_{s' \in \mathcal{S}} P_a(s, s') v_{\pi}(s') \Big)$$

Value Function of π

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_{s,a} \Big(r_a(s) + \gamma \sum_{s' \in \mathcal{S}} P_a(s, s') v_{\pi}(s') \Big)$$

Value Function of π

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_{s,a} \Big(r_a(s) + \gamma \sum_{s' \in \mathcal{S}} P_a(s, s') v_{\pi}(s') \Big)$$

Bellman Optimality

$$v^{\star}(s) = \max_{\pi \in \Pi_R} \sum_{a \in \mathcal{A}_s} \pi_{s,a} \left(r_a(s) + \gamma \sum_{s' \in \mathcal{S}} P_a(s,s') v^{\star}(s') \right).$$

• x_0 – current battery charge

► *x*⁰ – current battery charge

- x₀ current battery charge
- x_1 next battery charge

► *x*⁰ – current battery charge

• x_0 – current battery charge

• x_0 – current battery charge

- x₀ current battery charge
- x_1 next battery charge

Pendulum Value Function

Reinforcement learning

Solve large MDPs using only historical data:

- Rewards and transition probabilities are not known
- Can interact with the environment and observe outcomes and rewards
- There are too many states, the solution must generalize (Machine learning)
- How much to explore and exploit (Multi-armed bandits)

Reinforcement learning

Solve large MDPs using only historical data:

- Rewards and transition probabilities are not known
- Can interact with the environment and observe outcomes and rewards
- There are too many states, the solution must generalize (Machine learning)
- How much to explore and exploit (Multi-armed bandits)
- Want to learn more?: Come to my CS 980: Advanced ML.