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SVM: Classification with Maximum Margin Hyperplane
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Kernel SVM: Polynomial and Radial Kernels
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Regression Methods

I Covered 6+ classification methods

I Regression methods (4+)?
I Which ones are generative/discriminative?



Regression Methods

I Covered 6+ classification methods
I Regression methods (4+)?

I Which ones are generative/discriminative?



Regression Methods

I Covered 6+ classification methods
I Regression methods (4+)?
I Which ones are generative/discriminative?



Regression Trees

I Predict Baseball Salary based on Years played and Hits

I Example:

|
Years < 4.5

Hits < 117.5
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Tree Partition Space
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Advantages/Disadvantages of Decision Trees

I Advantages:
I Interpretability
I Non-linearity
I Li�le data preparation, scale invariance
I Works with qualitative and quantitative features

I Disadvantages:
I Hard to encode prior knowledge
I Di�icult to fit
I Limited generalization
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Decision Tree Terminology

I Internal nodes
I Branches
I Leaves
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Types of Decision Trees

I Regression trees

I Classification tree



Learning a Decision Tree

I NP Hard problem

I Approximate algorithms (heuristics):
I ID3, C4.5, C5.0 (classification)
I CART (classification and regression trees)
I MARS (regression trees)
I . . .



Learning a Decision Tree

I NP Hard problem

I Approximate algorithms (heuristics):
I ID3, C4.5, C5.0 (classification)
I CART (classification and regression trees)
I MARS (regression trees)
I . . .



CART: Learning Regression Trees

Two basic steps:

1. Divide predictor space into regions R1, . . . , RJ

2. Make the same prediction for all data points that fall in Rj



CART: Recursive Binary Spli�ing

I Greedy top-to-bo�om approach

I Recursively divide regions to minimize RSS∑
xi∈R1

(yi − ȳ1)2 +
∑

xi∈R2

(yi − ȳ2)2



CART: Spli�ing Example
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Tree Pruning

I Bias-variance trade-o� with regression trees?

I May overfit with many leaves.
I Be�er to build a large tree and then prune it to minimize:

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

I Why is it be�er to prune than to stop early?
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Pruning Example

|
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Hits < 117.5
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Impact of Pruning
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Classification Trees
I Similar to regression trees
I Except RSS does not make sense
I Use other measures of quality:

1. Classification error rate

1−max
k

pmk

O�en too pessimistic in practice
2. Gini (impurity) index (CART):

K∑
k=1

p̂mk(1− p̂mk
)

3. Cross-entropy (information gain) (ID3, C4.5):

−
K∑

k=1

p̂mk log p̂mk

I ID3, C4.5 do not prune



Why Not Use Classification Error?

Decision tree with classification error

Source: https://sebastianraschka.com/faq/docs/decisiontree-error-vs-entropy.html
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Why Not Use Classification Error?

Decision tree with information gain

Source: https://sebastianraschka.com/faq/docs/decisiontree-error-vs-entropy.html

https://sebastianraschka.com/faq/docs/decisiontree-error-vs-entropy.html


Why Not Use Classification Error?
Entropy is more optimistic

Source: https://sebastianraschka.com/faq/docs/decisiontree-error-vs-entropy.html

https://sebastianraschka.com/faq/docs/decisiontree-error-vs-entropy.html


Pruning in Classification Trees
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Trees vs. Linear Models
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Trees vs. KNN

I Trees do not require a distance metric
I Trees work well with categorical predictors
I Trees work well in large dimensions
I KNN are be�er in low-dimensional problems with complex

decision boundaries
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Bagging and Boosting

I Methods for reducing variance of decision trees
I Make predictions using a weighted vote of multiple trees
I Boosted trees are some of the most successful general machine

learning methods (on Kaggle)

I Disadvantage of using votes of multiple trees?
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Bagging

I Stands for “Bootstrap Aggregating”
I Construct multiple bootstrapped training sets:

T1, T2, . . . , TB

I Fit a tree to each one:

f̂1, f̂2, . . . , f̂B

I Make predictions by averaging individual tree predictions

f̂(x) =
1

B

B∑
b=1

f̂b(x)

I Large values of B are not likely to overfit, B ≈ 100 is a good
choice



Random Forests

I Many trees in bagging will be similar
I Algorithms choose the same features to split on
I Random forests help to address similarity:

I At each split, choose only fromm randomly sampled features

I Good empirical choice ism =
√
p
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Cross-validation and Bagging

I No need for cross-validation when bagging
I Evaluating trees on out-of bag samples is su�icient
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Boosting (Gradient Boosting, AdaBoost)

What Kaggle has to say:

source:

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/


Gradient Boosting (Regression)

I Boosting uses all of data, not a random subset (usually)

I Also builds trees f̂1, f̂2, . . .
I and weights λ1, λ2, . . .
I Combined prediction:

f̂(x) =
∑
i

λif̂i(x)

I Assume we have 1 . . .m trees and weights, next best tree?
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Gradient Boosting (Regression)
I Just use gradient descent

I Objective is to minimize RSS (1/2):

1

2

n∑
i=1

(yi − f(xi))
2

I Objective with the new treem+ 1:

1

2

n∑
i=1

yi − m∑
j=1

f̂j(xi)− f̂m+1(xi)

2

I Greatest reduction in RSS: gradient

yi −
m∑
j=1

f̂j(xi) ≈ f̂m+1(xi)
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XGBoost

I Scalable and flexible gradient boosting
I Interfaces for many languages and environments


