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Sequential Decision-Making

Sequential Decision-Making under Uncertainty

?
How Can I ... ?

I Move around in the physical world (navigation)

I Play and win a game

I Control the throughput of a power plant (process control)

I Manage a portfolio (finance)

I Medical diagnosis and treatment
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Sequential Decision-Making

Reinforcement Learning (RL)

I RL: A class of learning problems in which an agent interacts
with a dynamic, stochastic, and incompletely known
environment

I Goal: Learn an action-selection strategy, or policy, to
optimize some measure of its long-term performance

I Interaction: Modeled as a MDP
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Sequential Decision-Making

Markov Decision Process
MDP

I An MDP M is a tuple 〈X ,A, R, P, P0〉.

I X : set of states

I A: set of actions

I R(x, a): reward random variable, r(x, a) = E
[
R(x, a)

]

I P (·|x, a): transition probability distribution

I P0(·): initial state distribution

I Stationary Policy: a distribution over actions, conditioned on
the current state µ(·|x)
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Sequential Decision-Making

Discounted Reward MDPs
For a given policy µ

Return

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Risk-Neutral Objective

µ∗ = arg max
µ

∑

x∈X
P0(x)V µ(x)

where V µ(x) = E
[
Dµ(x)

]
.
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Sequential Decision-Making

Discounted Reward MDPs

For a given policy µ

Return

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Risk-Neutral Objective (for simplicity)

µ∗ = arg max
µ

V µ(x0)

x0 is the initial state, i.e., P0(x) = δ(x− x0).
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Sequential Decision-Making

Average Reward MDPs
For a given policy µ

Average Reward

ρ(µ) = lim
T→∞

1

T
E

[
T−1∑

t=0

Rt | µ
]

=
∑

x,a

πµ(x, a) r(x, a)

πµ(x, a): stationary dist. of state-action pair (x, a) under policy µ.

Risk-Neutral Objective

µ∗ = arg max
µ

ρ(µ)
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Sequential Decision-Making

Return Random Variable
return random variable︷ ︸︸ ︷

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Return  

Policy µ
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Sequential Decision-Making

Return Random Variable
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Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

return random variable︷ ︸︸ ︷

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

I a criterion that penalizes the variability induced by a given policy

I minimize some measure of risk as well as maximizing the usual
optimization criterion
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Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Objective: to optimize a risk-sensitive criterion such as

I expected exponential utility (Howard & Matheson 1972, Whittle 1990)

I variance-related measures (Sobel 1982; Filar et al. 1989)

I percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria

mainly negative results
(e.g., Sobel 1982; Filar et al., 1989; Mannor & Tsitsiklis, 2011)
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Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making
return random variable︷ ︸︸ ︷

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Pr
ob
ab
ili
ty

Return
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µ

Mean(Dµ)
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Risk-Sensitive Sequential Decision-Making
return random variable︷ ︸︸ ︷

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Pr
ob
ab
ili
ty

Return

Pr
ob
ab
ili
ty

Return
MeanVaR

Pr
ob
ab
ili
ty

Return

max
µ

Mean(Dµ)

s.t. Var↵(Dµ)  �

max
µ

Mean(Dµ)

M. Ghavamzadeh – Risk-averse Decision-making & Control



Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making
return random variable︷ ︸︸ ︷

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Pr
ob
ab
ili
ty

Return

Pr
ob
ab
ili
ty

Return
MeanVaR

0.1 

Pr
ob
ab
ili
ty

Return

max
µ

Mean(Dµ)

s.t. Var↵(Dµ)  �

max
µ

Mean(Dµ)

M. Ghavamzadeh – Risk-averse Decision-making & Control



Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making
return random variable︷ ︸︸ ︷

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Pr
ob
ab
ili
ty

Return

Pr
ob
ab
ili
ty

Return
MeanVaR

0.1 

CVaR 
0.1 

Pr
ob
ab
ili
ty

Return

max
µ

Mean(Dµ)

s.t. Var↵(Dµ)  �

max
µ

Mean(Dµ)

M. Ghavamzadeh – Risk-averse Decision-making & Control



Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making
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Pr
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Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making
loss random variable︷ ︸︸ ︷

Dµ(x) =

∞∑

t=0

γtC(xt, at) | x0 = x, µ

P
ro
b
a
b
il
it
y

Loss

P
ro
b
a
b
il
it
y

Loss

P
ro
b
a
b
il
it
y

LossMean VaR

CVaR

min
µ

Mean(Dµ)
min

µ
Mean(Dµ)

s.t. Var(Dµ) ≤ β

min
µ

Mean(Dµ)

s.t. CVaRα(Dµ) ≤ β
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Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

long history in operations research

I most work has been in the context of MDPs (model is known)

I much less work in reinforcement learning (RL) framework

Risk-Sensitive RL

I expected exponential utility (Borkar 2001, 2002)

I variance-related measures (Tamar et al., 2012, 2013; Prashanth & MGH, 2013, 2016)

I CVaR optimization (Chow & MGH, 2014; Tamar et al., 2015)

I coherent risk measures (Tamar, Chow, MGH, Mannor, 2015, 2017)
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Mean-Variance Optimization
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Mean-Variance Optimization Discounted Reward Setting
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Mean-Variance Optimization Discounted Reward Setting

Discounted Reward Setting
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Mean-Variance Optimization Discounted Reward Setting

Discounted Reward MDPs

Return

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Mean of Return (value function)

V µ(x) = E
[
Dµ(x)

]

Variance of Return (measure of variability)

Λµ(x) = E
[
Dµ(x)2

]
− V µ(x)2 = Uµ(x)− V µ(x)2
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Mean-Variance Optimization Discounted Reward Setting

Policy Evaluation (Estimating Mean and Variance)

1. A. Tamar, D. Di Castro, and S. Mannor. “Temporal Difference Methods for the
Variance of the Reward To Go”. ICML-2013.

2. A. Tamar, D. Di Castro, and S. Mannor. “Learning the Variance of the
Reward-To-Go”. JMLR-2016.
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Mean-Variance Optimization Discounted Reward Setting

Value Function

Return

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Value Function (mean of return) V µ : X → R

V µ(x) = E
[
Dµ(x)

]
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Mean-Variance Optimization Discounted Reward Setting

Action-value Function

Return

Dµ(x, a) =

∞∑

t=0

γtR(xt, at) | x0 = x, a0 = a, µ

Action-value Function (mean of return) Qµ : X ×A → R

Qµ(x, a) = E

[ ∞∑

t=0

γtr(Xt, At) | X0 = x, A0 = a, µ

]
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Mean-Variance Optimization Discounted Reward Setting

Bellman Equation

For a policy µ

I Bellman Equation for Value Function

V µ(x) = r
(
x, µ(x)

)
+ γ

∑

x′∈X
P
(
x′|x, µ(x)

)
V µ(x′)

I Bellman Equation for Action-value Function

Qµ(x, a) = r(x, a) + γ
∑

x′∈X
P (x′|x, a)V µ(x′)

= r(x, a) + γ
∑

x′∈X
P (x′|x, a)Qµ

(
x′, µ(x′)

)
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Mean-Variance Optimization Discounted Reward Setting

Variance of Return

Variance of Return (measure of variability)

Λµ(x) =

Uµ(x)︷ ︸︸ ︷
E
[
Dµ(x)2

]
−V µ(x)2

Square Reward Value Function

Uµ(x) = E
[
Dµ(x)2

]

Square Reward Action-value Function

Wµ(x, a) = E
[
Dµ(x, a)2

]
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Mean-Variance Optimization Discounted Reward Setting

Bellman Equation for Variance (Sobel, 1982)

For a policy µ

I Bellman Equation for Square Reward Value Function

Uµ(x) = r
(
x, µ(x)

)2
+ γ2

∑

x′∈X
P
(
x′|x, µ(x)

)
Uµ(x′)

+ 2γr
(
x, µ(x)

) ∑

x′∈X
P
(
x′|x, µ(x)

)
V µ(x′)

I Bellman Equation for Square Reward Action-value Function

Wµ(x, a) = r(x, a)2 + γ2
∑

x′∈X
P (x′|x, a)Uµ(x′)

+ 2γr(x, a)
∑

x′∈X
P (x′|x, a)V µ(x′)
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Mean-Variance Optimization Discounted Reward Setting

Dynamic Programming for Optimizing Variance (Sobel, 1982)

V is amenable to optimization with policy iteration

V µ1(x) ≥ V µ2(x), ∀x ∈ X =⇒ Qµ1(x, a) ≥ Qµ2(x, a), ∀x ∈ X , ∀a ∈ A

Λ is not amenable to optimization with policy iteration

Λµ1(x) ≥ Λµ2(x), ∀x ∈ X 6=⇒ Λµ1(x, a) ≥ Λµ2(x, a), ∀x ∈ X , ∀a ∈ A
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Mean-Variance Optimization Discounted Reward Setting

Dynamic Programming for Optimizing Variance

U alone does not satisfy the implication

Uµ1(x) ≥ Uµ2(x), ∀x ∈ X 6=⇒ Wµ1(x, a) ≥Wµ2(x, a), ∀x ∈ X , ∀a ∈ A

but U and V together do

V µ1(x) ≥ V µ2(x), ∀x ∈ X

Uµ1(x) ≥ Uµ2(x), ∀x ∈ X

 =⇒ Wµ1(x, a) ≥Wµ2(x, a), ∀x ∈ X , ∀a ∈ A
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Mean-Variance Optimization Discounted Reward Setting

Bellman Equation for Variance

Bellman equation for Uµ is linear in V µ and Uµ

Uµ(x) = r
(
x, µ(x)

)2
+ γ2

∑

x′∈X
P
(
x′|x, µ(x)

)
Uµ(x′)

+ 2γr
(
x, µ(x)

) ∑

x′∈X
P
(
x′|x, µ(x)

)
V µ(x′)

Bellman equation for Λµ is not linear in V µ and Λµ

Λµ(x) = Uµ(x)− V µ(x)2
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Mean-Variance Optimization Discounted Reward Setting

TD Methods for Variance



V µ(x) = r
(
x, µ(x)

)
+ γ

∑
x′∈X P

(
x′|x, µ(x)

)
V µ(x′)

Uµ(x) = r
(
x, µ(x)

)2
+ γ2∑

x′∈X P
(
x′|x, µ(x)

)
Uµ(x′)

+ 2γr
(
x, µ(x)

)∑
x′∈X P

(
x′|x, µ(x)

)
V µ(x′)

(1)

I solution to (1) may be expressed as the fixed point of a linear
mapping in the joint space V and U

M. Ghavamzadeh – Risk-averse Decision-making & Control



Mean-Variance Optimization Discounted Reward Setting

TD Methods for Variance

V µ(x) =

[T µZ]V (x)︷ ︸︸ ︷
r
(
x, µ(x)

)
+ γ

∑
x′∈X

P
(
x′|x, µ(x)

)
V µ(x′)

Uµ(x) =

[T µZ]U (x)︷ ︸︸ ︷
r
(
x, µ(x)

)2
+ γ2

∑
x′∈X

P
(
x′|x, µ(x)

)
Uµ(x′)

+ 2γr
(
x, µ(x)

) ∑
x′∈X

P
(
x′|x, µ(x)

)
V µ(x′)︸ ︷︷ ︸

[T µZ]U (x)

(1)

I solution to (1) may be expressed as the fixed point of a linear
mapping in the joint space V and U

T µ : R2|X| → R2|X| , Z = (ZV ∈ R|X|, ZU ∈ R|X|) , T µZ = Z
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TD Methods for Variance

V µ(x) =

[T µZ]V (x)︷ ︸︸ ︷
r
(
x, µ(x)

)
+ γ

∑
x′∈X

P
(
x′|x, µ(x)

)
V µ(x′)

Uµ(x) =

[T µZ]U (x)︷ ︸︸ ︷
r
(
x, µ(x)

)2
+ γ2

∑
x′∈X

P
(
x′|x, µ(x)

)
Uµ(x′)

+ 2γr
(
x, µ(x)

) ∑
x′∈X

P
(
x′|x, µ(x)

)
V µ(x′)︸ ︷︷ ︸

[T µZ]U (x)

(1)

I projection of this mapping onto a linear feature space is contracting
(allowing us to use TD methods)

SV = {v>φv(x) | v ∈ Rκ2 , x ∈ X} , SU = {u>φu(x) | u ∈ Rκ3 , x ∈ X}

ΠV : R|X| → SV , ΠU : R|X| → SU , Π =

(
ΠV 0
0 ΠU

)
, Z = ΠT µZ
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TD(0) Algorithm for Variance

TD(0) for Variance (Tamar et al., 2013)

vt+1 = vt + ζ(t)δtφv(xt) ut+1 = ut + ζ(t)εtφu(xt)

where the TD-errors δt and εt are computed as

δt = r(xt, at) + γv>t φv(xt+1)− v>t φv(xt)

εt = r(xt, at)
2 + 2γr(xt, at)v

>
t φv(xt+1) + γ2u>t φu(xt+1)− u>t φu(xt)
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Discounted Reward MDPs

Return

Dµ(x) =

∞∑

t=0

γtR(xt, at) | x0 = x, µ

Mean of Return (value function)

V µ(x) = E
[
Dµ(x)

]

Variance of Return (measure of variability)

Λµ(x) = E
[
Dµ(x)2

]
− V µ(x)2 = Uµ(x)− V µ(x)2
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Discounted Reward MDPs

Risk-Sensitive Criteria

1. Maximize V µ(x0) s.t. Λµ(x0) ≤ α

2. Minimize Λµ(x0) s.t. V µ(x0) ≥ α

3. Maximize the Sharpe Ratio: V µ(x0)/
√

Λµ(x0)

4. Maximize V µ(x0)− αΛµ(x0)
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Mean-Variance Optimization for Discounted MDPs

Optimization Problem

max
µ

V µ(x0) s.t. Λµ(x0) ≤ α
~w�

max
θ

Lλ(θ)
4
= V θ(x0)− λ

penalty function︷ ︸︸ ︷
Γ
(
Λθ(x0)− α

)

A class of parameterized stochastic policies{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ Rκ1

}

To tune θ, one needs to evaluate
∇θLλ(θ) = ∇θV θ(x0)− λΓ′

(
Λθ(x0)− α

)
∇θΛθ(x0)
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Mean-Variance Optimization for Discounted MDPs

Optimization Problem

max
µ

V µ(x0) s.t. Λµ(x0) ≤ α
~w�

max
θ

Lλ(θ)
4
= V θ(x0)− λ

penalty function︷ ︸︸ ︷
Γ
(
Λθ(x0)− α

)

A class of parameterized stochastic policies{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ Rκ1

}
To tune θ, one needs to evaluate

∇θLλ(θ) = ∇θV θ(x0)− λΓ′
(
Λθ(x0)− α

)
∇θΛθ(x0)
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Computing the Gradient

Computing the Gradient ∇θLλ(θ)

∇θV θ(x0) = Eξ [D(ξ) ∇θ logP(ξ|θ)]

∇θΛθ(x0) = Eξ
[
D(ξ)2 ∇θ logP(ξ|θ)

]
− 2V θ(x0) ∇θV θ(x0)

A System Trajectory of length τ generated by policy θ:

ξ =
(
x0 = x0, a0 ∼ µ(·|x0), x1, a1 ∼ µ(·|x1), . . . , xτ−1, aτ−1 ∼ µ(·|xτ−1)

)
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Computing the Gradient

Computing the Gradient ∇θLλ(θ)

∇θV θ(x0) = Eξ [D(ξ) ∇θ logP(ξ|θ)]

∇θΛθ(x0) = Eξ
[
D(ξ)2 ∇θ logP(ξ|θ)

]
− 2V θ(x0) ∇θV θ(x0)

∇θ logP(ξ|θ) =

τ−1∑

t=0

∇θ logµ(at|xt; θ)

A System Trajectory of length τ generated by policy θ:
ξ =

(
x0 = x0, a0 ∼ µ(·|x0), x1, a1 ∼ µ(·|x1), . . . , xτ−1, aτ−1 ∼ µ(·|xτ−1)

)
M. Ghavamzadeh – Risk-averse Decision-making & Control



Mean-Variance Optimization Discounted Reward Setting

Risk-Sensitive Policy Gradient Algorithms
∇θLλ(θ) = ∇θV θ(x0)− λΓ′

(
Λθ(x0)− α

)
∇θΛθ(x0)

∇θV θ(x0) = Eξ [D(ξ) ∇θ log P(ξ|θ)]

∇θΛθ(x0) = Eξ
[
D(ξ)2 ∇θ log P(ξ|θ)

]
− 2V θ(x0) ∇θV θ(x0)

At each iteration k, the algorithm

I Generates a trajectory ξk by following the policy θk and

I Update the parameters as

V̂k+1 = V̂k + ζ2(k)
(
D(ξk)− V̂k

)
Λ̂k+1 = Λ̂k + ζ2(k)

(
D(ξk)2 − V̂ 2

k − Λ̂k
)

θk+1 = θk + ζ1(k)
(
D(ξk)− λΓ′(Λ̂k+1 − α)

(
D(ξk)2 − 2V̂k+1D(ξk)

))
∇θ log P(ξk|θk)
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Risk-Sensitive Policy Gradient Algorithms
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)
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(
D(ξk)− λΓ′(Λ̂k+1 − α)

(
D(ξk)2 − 2V̂k+1D(ξk)

))
∇θ log P(ξk|θk)
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Risk-Sensitive Policy Gradient Algorithms
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Risk-Sensitive Policy Gradient Algorithms

At each iteration k, the algorithm

I Generates a trajectory ξk by following the policy θk and

I Update the parameters as

V̂k+1 = V̂k + ζ2(k)
(
D(ξk)− V̂k

)
Λ̂k+1 = Λ̂k + ζ2(k)

(
D(ξk)2 − V̂ 2

k − Λ̂k
)

θk+1 = θk + ζ1(k)
(
D(ξk)− λΓ′(Λ̂k+1 − α)

(
D(ξk)2 − 2V̂k+1D(ξk)

))
∇θ log P(ξk|θk)

step-sizes {ζ2(k)} and {ζ1(k)} are chosen such that the mean and variance
updates are on the faster time-scale than the policy parameter.

ζ1(k) = o
(
ζ2(k)

)
or equivalently lim

k→∞

ζ1(k)

ζ2(k)
= 0
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Risk-Sensitive Policy Gradient Algorithms (Optimizing Sharpe Ratio)

At each iteration k, the algorithm

I Generates a trajectory ξk by following the policy θk and

I Update the parameters as

V̂k+1 = V̂k + ζ2(k)
(
D(ξk)− V̂k

)
Λ̂k+1 = Λ̂k + ζ2(k)

(
D(ξk)2 − V̂ 2

k − Λ̂k
)

θk+1 = θk +
ζ1(k)√
Λ̂k+1

(
D(ξk)−

V̂k+1D(ξk)2 − 2D(ξk)V̂ 2
k+1

2Λ̂k+1

)
∇θ log P(ξk|θk)

two time-scale stochastic approximation algorithm
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Risk-Sensitive Policy Gradient Algorithms (Optimizing Sharpe Ratio)

At each iteration k, the algorithm

I Generates a trajectory ξk by following the policy θk and
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(
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)
Λ̂k+1 = Λ̂k + ζ2(k)
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D(ξk)2 − V̂ 2
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(
D(ξk)−
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)
∇θ log P(ξk|θk)
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Experimental Results
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Simple Portfolio Management Problem (Tamar et al., 2012)

Problem Description
State: xt ∈ RN+2

x
(1)
t ∈ [0, 1] fraction of investment in liquid assets

x
(2)
t , . . . , x

(N+1)
t ∈ [0, 1] fraction of investment in non-liquid assets

with time to maturity 1, . . . , N time steps

x
(N+2)
t deviation of interest rate of non-liquid assets from its mean

Action: investing a fraction α of the total available cash in a non-liquid asset

Cost: logarithm of the return from the investment

Aim: find a risk-sensitive investment strategy to mix liquid assets with fixed
interest rate & risky non-liquid assets with time-variant interest rate
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Results - Simple Portfolio Management Problem

Policy Gradients with Variance Related Risk Criteria

suggesting that J̃k and Ṽk may be associated with the
following ordinary di↵erential equations (ODE)

J̇ = E✓[B|x0 = x⇤] � J,

V̇ = E✓[B
2|x0 = x⇤] � J2 � V.

(16)

For each ✓, the ODE (16) can be solved analytically to
yield J(t) = J1+c1e

�t and V (t) = V 1�2J1c1te
�t+

c2
1e

�2t + c2e
�t, where c1 and c2 are constants, and

{J1, V 1} is a globally asymptotically stable fixed
point which satisfies

J1 = J✓(x
⇤), V 1 = V✓(x

⇤). (17)

In turn, due to the timescale di↵erence, J̃k and Ṽk in
the iteration for ✓k may be replaced with their station-
ary limit points J1 and V 1, suggesting the following
ODE for ✓

✓̇ = r (J✓(x
⇤) � �g (V✓(x

⇤) � b)) . (18)

Under Assumption 4.1, the set of stable fixed point
of (18) is just the set of locally optimal points of the
objective function f�. Let Z denote this set, which
by Assumption 4.1 is countable. Then, by Theorem 5
in Leslie & Collins, 2002 (which is extension of Theo-
rem 1.1 in Borkar, 1997), ✓k converges to a point in Z
almost surely.

5. Experiments

In this section we apply the simulation based algo-
rithms of Section 4 to a portfolio management prob-
lem, where the available investment options include
both liquid and non-liquid assets. In the interest of
understanding the performance of the di↵erent algo-
rithms, we consider a rather simplistic model of the
corresponding financial problem. We emphasize that
dealing with richer models requires no change in the
algorithms.

We consider a portfolio that is composed of two types
of assets. A liquid asset (e.g., short term T-bills),
which has a fixed interest rate rl but may be sold at
every time step t = 1, . . . , T , and a non-liquid asset
(e.g., low liquidity bonds or options) that has a time
dependent interest rate rnl(t), yet may be sold only
after a maturity period of N steps. In addition, the
non-liquid asset has some risk of not being paid (i.e.,
a default) with a probability prisk. A common invest-
ment strategy in this setup is laddering–splitting the
investment in the non-liquid assets to chunks that are
reinvested in regular intervals, such that a regular cash
flow is maintained. In our model, at each time step the
investor may change his portfolio by investing a fixed
fraction ↵ of his total available cash in a non-liquid
asset. Of course, he can only do that when he has at

least ↵ invested in liquid assets, otherwise he has to
wait until enough non-liquid assets mature. In addi-
tion, we assume that at each t the interest rate rnl(t)

takes one of two values - rhigh
nl or rlow

nl , and the tran-
sitions between these values occur stochastically with
switching probability pswitch. The state of the model at
each time step is represented by a vector x(t) 2 RN+2,
where x1 2 [0, 1] is the fraction of the investment in liq-
uid assets, x2, . . . , xN+1 2 [0, 1] is the fraction in non-
liquid assets with time to maturity of 1, . . . , N time
steps, respectively, and xN+2(t) = rnl(t) � E[rnl(t)].
At time t = 0 we assume that all investments are in
liquid assets, and we denote x⇤ = x(t = 0). The binary
action at each step is determined by a stochastic pol-
icy, with probability µ✓(x) = ✏ + (1 � 2✏)/

�
1 + e�✓x

�

of investing in a non-liquid asset. Note that this ‘✏-
constrained’ softmax policy comes to satisfy Assump-
tion 2.3. Our reward is just the logarithm of the return
from the investment (which is additive at each step).
The dynamics of the investment chunks are illustrated
in Figure 2.

Figure 2. Dynamics of the investment.

We optimized the policy parameters using the sim-
ulation based algorithms of Section 4 with three
di↵erent performance criteria: (a) Average re-
ward: max J(x⇤), (b) Variance constrained re-
ward max J(x⇤) s.t. V (x⇤)  b, and (c) the SR
max J(x⇤)

p
V (x⇤). Figure 3 shows the distribution

of the accumulated reward. As anticipated, the pol-
icy for criterion (a) was risky, and yielded higher gain
than the policy for the variance constrained criterion
(b). Interestingly, maximizing the SR resulted in a
very conservative policy, that almost never invested
in the non-liquid asset. The parameters for the ex-
periments are detailed in the supplementary material,
Section C.

6. Conclusion

This work presented a novel algorithmic approach for
RL with variance related risk criteria, a subject that
while being important for many applications, has been

Dynamics of the investment

Policy Gradients with Variance Related Risk Criteria

Figure 3. Distribution of the accumulated reward. Solid
line: corresponds to the policy obtained by maximizing
total reward. Dash-dotted line: maximizing total reward
s.t. variance less than 20. Dashed line : maximize the SR.

notoriously known to pose significant algorithmic chal-
lenges. Since getting to an optimal solution seems hard
even when the model is known, we adopted a gradient
based approach that achieves local optimality.

A few issues are in need of further investigation. First,
we note a possible extension to other risk measures
such as the percentile criterion (Delage & Mannor,
2010). This will require a result reminiscent to Propo-
sition 3.1 that would allow us to drive the optimiza-
tion. Second, we could consider variance in the opti-
mization process to improve convergence time in the
style of control variates. Policy gradient algorithms
are known to su↵er from high variance when the re-
current state in not visited frequently. One technique
for dealing with this di�culty is by using control vari-
ates (Greensmith et al., 2004). Imposing a variance
constraint as described in this work also acts along
this direction, and may in fact improve performance of
such algorithms even if variance is not part of the cri-
terion we are optimizing. Third, policy gradients are
just one family of algorithms we can consider. It would
be interesting to see if a temporal-di↵erence style algo-
rithm can be developed for the risk measures consid-
ered here. Lastly, we note that experimentally, maxi-
mizing the SR resulted in a very risk averse behavior.
This interesting phenomenon deserves more research.
It suggests that it might be more prudent to consider
other risk measures instead of the SR.

Acknowledgements

The research leading to these results has received funding
from the European Unions Seventh Framework Programme
(FP7/2007-2013) under PASCAL2 (PUMP PRIMING)
grant agreement no. 216886 and under a Marie Curie Rein-
tegration Fellowship (IRG) grant agreement no. 249254.

References

Baxter, J. and Bartlett, P. L. Infinite-horizon policy-
gradient estimation. JAIR, 15:319–350, 2001.

Bertsekas, D. P. Dynamic Programming and Optimal Con-
trol, Vol II. Athena Scientific, third edition, 2006.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming. Athena Scientific, 1996.

Borkar, V. S. Stochastic approximation with two time
scales. Systems & Control Letters, 29(5):291 – 294, 1997.

Borkar, V. S. and Meyn, S. P. Risk-sensitive optimal con-
trol for markov decision processes with monotone cost.
Math. Oper. Res., 27(1):192–209, 2002.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge Univ Pr, 2004.

Delage, E. and Mannor, S. Percentile optimization for
Markov decision processes with parameter uncertainty.
Operations Research, 58(1):203–213, 2010.

Filar, J. A., Krass, D., and Ross, K. W. Percentile per-
formance criteria for limiting average markov decision
processes. IEEE Trans. Auto. Control, 40(1):2–10, 1995.

Geibel, P. and Wysotzki, F. Risk-sensitive reinforcement
learning applied to control under constraints. JAIR, 24
(1):81–108, 2005.

Greensmith, E., Bartlett, P. L., and Baxter, J. Variance
reduction techniques for gradient estimates in reinforce-
ment learning. JMLR, 5:1471–1530, 2004.

Howard, R. A. and Matheson, J. E. Risk-sensitive markov
decision processes. Management Science, 18(7):356–369,
1972.

Leslie, D. S. and Collins, E.J. Convergent multiple-
timescales reinforcement learning algorithms in normal
form games. Annals of App. Prob., 13:1231–1251, 2002.

Luenberger, D. Investment Science. Oxford University
Press, 1998.

Mannor, S. and Tsitsiklis, J. N. Mean-variance optimiza-
tion in markov decision processes. In ICML.

Marbach, P. and Tsitsiklis, J. N. Simulation-based op-
timization of markov reward processes. IEEE Trans.
Auto. Control, 46(2):191–209, 1998.

Nilim, A. and El Ghaoui, L. Robust control of Markov de-
cision processes with uncertain transition matrices. Op-
erations Research, 53(5):780–798, 2005.

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. An an-
alytic solution to discrete bayesian reinforcement learn-
ing. In ICML, 2006.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
Inc., 1994.

Sharpe, W. F. Mutual fund performance. The Journal of
Business, 39(1):119–138, 1966.

Sobel, M. J. The variance of discounted markov decision
processes. J. Applied Probability, pp. 794–802, 1982.

V (x0)

risk neutral - mean-var - Sharpe Ratio

M. Ghavamzadeh – Risk-averse Decision-making & Control



Mean-Variance Optimization Discounted Reward Setting

Summary - Risk-Sensitive Policy Gradient Algorithms

I Algorithms can be implemented as single time-scale
(generating several trajectories from each policy & then update)

I λ is assumed to be fixed (selecting λ from a list)
(learning λ adds another time-scale to the algorithm)

I The unit of observation is a system trajectory (not state-action pair)

I algorithms are simple (+)

I better-suited to un-discounted problems (episodic)

I unbiased estimates of the gradient (+)

I high variance estimates of the gradient
(variance grows with the length of the trajectories) (–)
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Actor-Critic Algorithms

1. Prashanth L. A. and MGH. “Actor-Critic Algorithms for Risk-Sensitive MDPs”.
NIPS-2013.

2. Prashanth L. A. and MGH. “Variance-constrained Actor-Critic Algorithms for
Discounted and Average Reward MDPs”. MLJ-2016.
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Mean-Variance Optimization for Discounted MDPs
Optimization Problem

max
µ

V µ(x0) s.t. Λµ(x0) ≤ α
~w�

max
λ

min
θ

L(θ, λ)
4
= −V θ(x0) + λ

(
Λθ(x0)− α

)

A class of parameterized stochastic policies
{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ Rκ1

}

One needs to evaluate ∇θL(θ, λ) and ∇λL(θ, λ) to tune θ and λ

The goal is to find the saddle point of L(θ, λ)
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Computing the Gradients

Computing the Gradient ∇θL(θ, λ)

(1− γ)∇θV θ(x0) =
∑

x,a

πθγ(x, a|x0) ∇θ logµ(a|x; θ) Qθ(x, a)

(1− γ2)∇θUθ(x0) =
∑

x,a

π̃θγ(x, a|x0) ∇θ logµ(a|x; θ) W θ(x, a)

+ 2γ
∑

x,a,x′

π̃θγ(x, a|x0) P (x′|x, a) r(x, a) ∇θV θ(x′)

πθγ(x, a|x0) and π̃θγ(x, a|x0) are γ and γ2 discounted visiting state
distributions of the Markov chain under policy θ
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Simultaneous Perturbation (SP) Methods

Idea: Estimate the gradients ∇θV θ(x0) and ∇θUθ(x0) using two simulated
trajectories of the system corresponding to policies with parameters θ and
θ+ = θ + β∆, β > 0.

Our actor-critic algorithms are based on two SP methods

1. Simultaneous Perturbation Stochastic Approximation (SPSA)

2. Smoothed Functional (SF)
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Simultaneous Perturbation Methods

SPSA Gradient Estimate

∂θ(i) V̂
θ(x0) ≈ V̂ θ+β∆(x0)− V̂ θ(x0)

β∆(i)
, i = 1, . . . , κ1

∆ is a vector of independent Rademacher random variables

SF Gradient Estimate

∂θ(i) V̂
θ(x0) ≈ ∆(i)

β

(
V̂ θ+β∆(x0)− V̂ θ(x0)

)
, i = 1, . . . , κ1

∆ is a vector of independent Gaussian N (0, 1) random variables
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Mean-Variance Actor-Critic Algorithm

θt

+

β∆t

a+
t ∼ µ(·|x+

t ; θ+
t )

r+
t

at ∼ µ(·|xt; θt)
rt

δ+
t , �+t , v+

t , u+
t

Critic

δt, �t, vt, ut

Critic

θt+1

Actor

Update

using

θt

(8) 

or  (9)

Trajectory 1 take action at ∼ µ(·|xt; θt), observe reward r(xt, at) and next state xt+1

Trajectory 2 take action a+
t ∼ µ(·|x+

t ; θ+
t ), observe reward r(x+

t , a
+
t ) and next state

x+
t+1

Critic update the critic parameters vt, v+
t for value and ut, u+

t for square value
functions in a TD-like fashion

Actor estimate ∇V θ(x0) and ∇Uθ(x0) using SPSA or SF and update the policy
parameter θ and the Lagrange multiplier λ
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Mean-Variance Actor-Critic Algorithm

Critic Updates (Tamar et al., 2013)

vt+1 = vt + ζ3(t)δtφv(xt) v+
t+1 = v+

t + ζ3(t)δ+
t φv(x+

t )

ut+1 = ut + ζ3(t)εtφu(xt) u+
t+1 = u+

t + ζ3(t)ε+t φu(x+
t )

where the TD-errors δt, δ+
t , εt, ε

+
t are computed as

δt = r(xt, at) + γv>t φv(xt+1)− v>t φv(xt)

δ+
t = r(x+

t , a
+
t ) + γv+>

t φv(x+
t+1)− v+>

t φv(x+
t )

εt = r(xt, at)
2 + 2γr(xt, at)v

>
t φv(xt+1) + γ2u>t φu(xt+1)− u>t φu(xt)

ε+t = r(x+
t , a

+
t )2 + 2γr(x+

t , a
+
t )v+>

t φv(x+
t+1) + γ2u+>

t φu(x+
t+1)− u+>

t φu(x+
t )
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Mean-Variance Actor-Critic Algorithm
Actor Updates

θ
(i)
t+1 = Γi

[
θ
(i)
t +

ζ2(t)

β∆
(i)
t

((
1 + 2λtv

>
t φv(x0)

)
(v+
t − vt)

>φv(x0)− λt(u+
t − ut)

>φu(x0)
)]

(SPSA)

θ
(i)
t+1 = Γi

[
θ
(i)
t +

ζ2(t)∆
(i)
t

β

((
1 + 2λtv

>
t φv(x0)

)
(v+
t − vt)

>φv(x0)− λt(u+
t − ut)

>φu(x0)
)]

(SF)

λt+1 = Γλ

[
λt + ζ1(t)

(
u>t φu(x0)−

(
v>t φv(x0)

)2 − α)]

step-sizes {ζ3(t)}, {ζ2(t)}, and {ζ1(t)} are chosen such that the critic, policy
parameter, and Lagrange multiplier updates are on the fastest, intermediate,
and slowest time-scales, respectively.

three time-scale stochastic approximation algorithm
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Sequential Decision-Making
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Average Reward Setting
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Average Reward MDPs

Average Reward

ρ(µ) = lim
T→∞

1

T
E

[
T−1∑

t=0

Rt | µ
]

=
∑

x,a

πµ(x, a) r(x, a)

Long-Run Variance (measure of variability)

Λ(µ) =
∑

x,a

πµ(x, a)
[
r(x, a)−ρ(µ)

]2
= lim

T→∞
1

T
E

[
T−1∑

t=0

(
Rt − ρ(µ)

)2 | µ
]

The frequency of visiting state-action pairs, πµ(x, a), determines the
variability in the average reward.
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Average Reward MDPs

Average Reward

ρ(µ) = lim
T→∞

1

T
E

[
T−1∑

t=0

Rt | µ
]

=
∑

x,a

πµ(x, a) r(x, a)

Long-Run Variance (measure of variability)

Λ(µ) =
∑

x,a

πµ(x, a)
[
r(x, a)− ρ(µ)

]2
= lim

T→∞
1

T
E

[
T−1∑

t=0

(
Rt − ρ(µ)

)2 | µ
]

= η(µ)− ρ(µ)2, where η(µ) =
∑

x,a

πµ(x, a) r(x, a)2
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Mean-Variance Optimization for Average Reward MDPs

Optimization Problem

max
µ

ρ(µ) s.t. Λ(µ) ≤ α
~w�

max
λ

min
θ

L(θ, λ)
4
= −ρ(θ) + λ

(
Λ(θ)− α

)

One needs to evaluate ∇θL(θ, λ) and ∇λL(θ, λ) to tune θ and λ
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Computing the Gradients

Computing the Gradient ∇θL(θ, λ)

∇ρ(θ) =
∑

x,a

π(x, a; θ)∇ logµ(a|x; θ)Q(x, a; θ)

∇η(θ) =
∑

x,a

π(x, a; θ)∇ logµ(a|x; θ)W (x, a; θ)

Uµ and Wµ are the differential value and action-value functions associated
with the square reward, satisfying the following Poisson equations:

η(µ) + Uµ(x) =
∑

a

µ(a|x)

[
r(x, a)2 +

∑

x′

P (x′|x, a)Uµ(x′)

]

η(µ) +Wµ(x, a) = r(x, a)2 +
∑

x′

P (x′|x, a)Uµ(x′)
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Mean-Variance Actor-Critic Algorithm

Input: policy µ(·|·; θ) and value function feature vectors φv(·) and φu(·)
Initialization: policy parameters θ = θ0; value function weight vectors v = v0 and
u = u0; initial state x0 ∼ P0(x)
for t = 0, 1, 2, . . . do

Draw action at ∼ µ(·|xt; θt) and observe reward R(xt, at) and next state xt+1

Average Updates: ρ̂t+1 =
(
1− ζ4(t)

)
ρ̂t + ζ4(t)R(xt, at)

η̂t+1 =
(
1− ζ4(t)

)
η̂t + ζ4(t)R(xt, at)

2

TD Errors: δt = R(xt, at)− ρ̂t+1 + v>t φv(xt+1)− v>t φv(xt)

εt = R(xt, at)
2 − η̂t+1 + u>t φu(xt+1)− u>t φu(xt)

Critic Update: vt+1 = vt + ζ3(t)δtφv(xt), ut+1 = ut + ζ3(t)εtφu(xt)

Actor Update: θt+1 = Γ
(
θt − ζ2(t)

(
− δtψt + λt(εtψt − 2ρ̂t+1δtψt)

))
λt+1 = Γλ

(
λt + ζ1(t)(η̂t+1 − ρ̂2

t+1 − α)
)

end for
return policy and value function parameters θ, λ, v, u
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Traffic Signal Control Problem (Prashanth & MGH, 2016)

Problem Description
State: vector of queue lengths and elapsed times

xt = (q1, . . . , qN , t1, . . . , tN )

Action: feasible sign configurations

Cost:

h(xt) =r1 ∗
[ ∑
i∈Ip

r2 ∗ qi(t) +
∑
i/∈Ip

s2 ∗ qi(t)
]

+ s1 ∗
[ ∑
i∈Ip

r2 ∗ ti(t) +
∑
i/∈Ip

s2 ∗ ti(t)
]

Aim: find a risk-sensitive control strategy that minimizes the total
delay experienced by road users, while also reducing the
variations
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Results - Discounted Reward Setting Mach Learn
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Fig. 3 Performance comparison in the discounted setting using the distribution of Dθ (x0). a SPSA-G versus
RS-SPSA-G, b SF-G versus RS-SF-G, c SPSA-N versus RS-SPSA-N, d SF-N versus RS-SF-N

operator for the Lagrangemultiplier used the set [0, 1000]. The initial policy parameter θ0 was
set to the κ1-dimensional vector of ones. All the experiments were performed on a 2.53GHz
Intel quad core machine with 3.8GB RAM.

9.2 Results

Figure 3 shows the distribution of the discounted cumulative cost Dθ (x0) for the algorithms
in the discounted setting. Figure 4 shows the total arrived road users (TAR) obtained for all
the algorithms in the discounted setting, whereas Fig. 5 presents the average junction waiting
time (AJWT) for the first-order SF-based algorithm RS-SF-G.9 TAR is a throughput metric
that measures the number of road users who have reached their destination, whereas AJWT
is a delay metric that quantifies the average delay experienced by the road users.

The performance of the algorithms in the average setting is presented inFig. 6. In particular,
Fig. 6a shows the distribution of the average reward ρ, while Fig. 6b presents the average
junction waiting time (AJWT) for the average cost algorithms.

Observation 1 Risk-sensitive algorithms that we propose result in a long-term (discounted
or average) cost that is higher than their risk-neutral variants, but with a significantly lower
empirical variance of the cost in both discounted as well as average cost settings.

9 The AJWT performance of the other algorithms in the discounted setting is similar and the corresponding
plots are omitted here.
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Fig. 4 Performance comparison of the algorithms in the discounted setting using the total arrived road users
(TAR). a SPSA-G versus RS-SPSA-G, b SF-G versus RS-SF-G, c SPSA-N versus RS-SPSA-N, d SF-N versus
RS-SF-N

Fig. 5 Performance comparison
of the first-order SF-based
algorithms, SF-G and RS-SF-G,
using the average junction
waiting time (AJWT)
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The above observation is apparent fromFigs. 3 and 6a,which present results for discounted
and average cost settings respectively.

Observation 2 From a traffic signal control application standpoint, the risk-sensitive algo-
rithms exhibit a mean throughput/delay that is close to that of the corresponding risk-neutral
algorithms, but with a lower empirical variance in throughput/delay.
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Total arrived drivers

Total Arrived Drivers
Algorithm Risk-Neutral Risk-Sensitive
SPSA-G 754.84± 317.06 622.38± 28.36
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Fig. 3 Performance comparison in the discounted setting using the distribution of Dθ (x0). a SPSA-G versus
RS-SPSA-G, b SF-G versus RS-SF-G, c SPSA-N versus RS-SPSA-N, d SF-N versus RS-SF-N

operator for the Lagrangemultiplier used the set [0, 1000]. The initial policy parameter θ0 was
set to the κ1-dimensional vector of ones. All the experiments were performed on a 2.53GHz
Intel quad core machine with 3.8GB RAM.

9.2 Results

Figure 3 shows the distribution of the discounted cumulative cost Dθ (x0) for the algorithms
in the discounted setting. Figure 4 shows the total arrived road users (TAR) obtained for all
the algorithms in the discounted setting, whereas Fig. 5 presents the average junction waiting
time (AJWT) for the first-order SF-based algorithm RS-SF-G.9 TAR is a throughput metric
that measures the number of road users who have reached their destination, whereas AJWT
is a delay metric that quantifies the average delay experienced by the road users.

The performance of the algorithms in the average setting is presented inFig. 6. In particular,
Fig. 6a shows the distribution of the average reward ρ, while Fig. 6b presents the average
junction waiting time (AJWT) for the average cost algorithms.

Observation 1 Risk-sensitive algorithms that we propose result in a long-term (discounted
or average) cost that is higher than their risk-neutral variants, but with a significantly lower
empirical variance of the cost in both discounted as well as average cost settings.

9 The AJWT performance of the other algorithms in the discounted setting is similar and the corresponding
plots are omitted here.
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Fig. 4 Performance comparison of the algorithms in the discounted setting using the total arrived road users
(TAR). a SPSA-G versus RS-SPSA-G, b SF-G versus RS-SF-G, c SPSA-N versus RS-SPSA-N, d SF-N versus
RS-SF-N

Fig. 5 Performance comparison
of the first-order SF-based
algorithms, SF-G and RS-SF-G,
using the average junction
waiting time (AJWT)
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The above observation is apparent fromFigs. 3 and 6a,which present results for discounted
and average cost settings respectively.

Observation 2 From a traffic signal control application standpoint, the risk-sensitive algo-
rithms exhibit a mean throughput/delay that is close to that of the corresponding risk-neutral
algorithms, but with a lower empirical variance in throughput/delay.
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Results - Actor-Critic vs. Policy Gradient
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Fig. 7 Convergence of SPSA based algorithms in the discounted setting—illustration using two (arbitrarily
chosen) coordinates of the parameter θ . a RS-SPSA-G, b RS-SPSA-N
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Fig. 8 Performance comparison of RS-SPSA and TAMAR (Tamar et al. 2012) algorithms using two different
metrics. a Distribution of Dθ (x0), b total arrived road users (TAR)

Figure 8 shows the distribution of the cumulative cost Dθ (x0) and the total arrived road
users (TAR) obtained for TAMAR and RS-SPSA algorithms. It is evident that RS-SPSA
performs better than TAMAR in terms of mean as well as variance of the cumulative cost
and also in terms of the throughput (TAR) observed. These results illustrate the benefits
of using an actor-critic architecture. Note that both algorithms use the same parameterized
Boltzmann policy (see Eq. 79) and the results have been obtained with the same number
of updates, i.e., 500 SPSA updates, which is equivalent to 1000 policy gradient updates, as
each iteration of SPSA uses two trajectories to estimate the gradient. While the results in
Fig. 8 implicitly indicate that RS-SPSA gives a better estimate of the gradient in comparison
to TAMAR, we make this observation explicit in Table 2, which plots the results from the
following experiment:

Step 1 (True gradient estimation): Estimate ∇θΛ(x0) using the likelihood ratio method,
along the lines of Lemma 4.2 in Tamar et al. (2012). For this purpose, simulate a large
number, say ⊤1 = 1000, of trajectories of the underlying MDP (as before, we truncate
the trajectories to 150 steps). This estimate can be safely assumed to be very close to the
true gradient and hence, we shall use it as the benchmark for comparing our SPSA based
actor-critic scheme vs. the policy gradient approach of TAMAR.
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Fig. 7 Convergence of SPSA based algorithms in the discounted setting—illustration using two (arbitrarily
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Fig. 8 Performance comparison of RS-SPSA and TAMAR (Tamar et al. 2012) algorithms using two different
metrics. a Distribution of Dθ (x0), b total arrived road users (TAR)

Figure 8 shows the distribution of the cumulative cost Dθ (x0) and the total arrived road
users (TAR) obtained for TAMAR and RS-SPSA algorithms. It is evident that RS-SPSA
performs better than TAMAR in terms of mean as well as variance of the cumulative cost
and also in terms of the throughput (TAR) observed. These results illustrate the benefits
of using an actor-critic architecture. Note that both algorithms use the same parameterized
Boltzmann policy (see Eq. 79) and the results have been obtained with the same number
of updates, i.e., 500 SPSA updates, which is equivalent to 1000 policy gradient updates, as
each iteration of SPSA uses two trajectories to estimate the gradient. While the results in
Fig. 8 implicitly indicate that RS-SPSA gives a better estimate of the gradient in comparison
to TAMAR, we make this observation explicit in Table 2, which plots the results from the
following experiment:

Step 1 (True gradient estimation): Estimate ∇θΛ(x0) using the likelihood ratio method,
along the lines of Lemma 4.2 in Tamar et al. (2012). For this purpose, simulate a large
number, say ⊤1 = 1000, of trajectories of the underlying MDP (as before, we truncate
the trajectories to 150 steps). This estimate can be safely assumed to be very close to the
true gradient and hence, we shall use it as the benchmark for comparing our SPSA based
actor-critic scheme vs. the policy gradient approach of TAMAR.
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Results - Average Reward Setting
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Fig. 6 Performance comparison of the risk-neutral (AC) and risk-sensitive (RS-AC) average reward actor-
critic algorithms using two different metrics. a average reward ρ distribution, b average junction waiting
time

Table 1 Throughput (TAR) for
algorithms in the discounted
setting: standard deviation from
50 independent simulations
shown after ±

Algorithm Risk-neutral Risk-sensitive

SPSA-G 754.84± 317.06 622.38± 28.36

SF-G 832.34± 82.24 810.82± 36.56

SPSA-N 1077.2.66± 250.42 942.3± 65.77

SF-N 1013.62± 152.22 870.5± 61.61

Figures 4, 5 and 6b validate the first part of the observation above, while the results for
the discounted risk-sensitive algorithms in Table 1 substantiate the second part in the above
observation. In particular, Table 1 presents the mean and standard deviation of the final TAR
value (i.e., the TAR value observed at the end of the policy test phase) for both first-order
and second-order algorithms in the discounted setting and it is evident that the risk-sensitive
algorithms exhibit a lower empirical variance in TAR when compared to their risk-neutral
counterparts.

From the results in Figs. 3, 4 and Table 1, it is apparent that the second-order schemes
(RS-SPSA-N and RS-SF-N) in the discounted setting exhibit better results in comparison to
first-ordermethods (RS-SPSA-G andRS-SF-G), from themean and variance of the long-term
discounted cost as well as the throughput (TAR) performance.

Observation 3 The policy parameter θ converges for the risk-sensitive algorithms.

The above observation is validated for SPSA based algorithms in the discounted setting
in Fig. 7a, b. Note that we established theoretical convergence of our algorithms earlier (see
Sects. 7, 8) and these plots confirm the same. Further, these plots also show that the transient
period, i.e., the initial phase when θ has not converged, is short. Similar observations hold
for the other algorithms as well. The results of this section indicate the rapid empirical
convergence of our proposed algorithms. This observation coupled with the fact that they
guarantee low variance of return,make them attractive for implementation in risk-constrained
systems.

Observation 4 RS-SPSA, which is based on an actor-critic architecture, outperforms
TAMAR, which employs a policy gradient approach.
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Fig. 6 Performance comparison of the risk-neutral (AC) and risk-sensitive (RS-AC) average reward actor-
critic algorithms using two different metrics. a average reward ρ distribution, b average junction waiting
time

Table 1 Throughput (TAR) for
algorithms in the discounted
setting: standard deviation from
50 independent simulations
shown after ±

Algorithm Risk-neutral Risk-sensitive

SPSA-G 754.84± 317.06 622.38± 28.36

SF-G 832.34± 82.24 810.82± 36.56

SPSA-N 1077.2.66± 250.42 942.3± 65.77

SF-N 1013.62± 152.22 870.5± 61.61

Figures 4, 5 and 6b validate the first part of the observation above, while the results for
the discounted risk-sensitive algorithms in Table 1 substantiate the second part in the above
observation. In particular, Table 1 presents the mean and standard deviation of the final TAR
value (i.e., the TAR value observed at the end of the policy test phase) for both first-order
and second-order algorithms in the discounted setting and it is evident that the risk-sensitive
algorithms exhibit a lower empirical variance in TAR when compared to their risk-neutral
counterparts.

From the results in Figs. 3, 4 and Table 1, it is apparent that the second-order schemes
(RS-SPSA-N and RS-SF-N) in the discounted setting exhibit better results in comparison to
first-ordermethods (RS-SPSA-G andRS-SF-G), from themean and variance of the long-term
discounted cost as well as the throughput (TAR) performance.

Observation 3 The policy parameter θ converges for the risk-sensitive algorithms.

The above observation is validated for SPSA based algorithms in the discounted setting
in Fig. 7a, b. Note that we established theoretical convergence of our algorithms earlier (see
Sects. 7, 8) and these plots confirm the same. Further, these plots also show that the transient
period, i.e., the initial phase when θ has not converged, is short. Similar observations hold
for the other algorithms as well. The results of this section indicate the rapid empirical
convergence of our proposed algorithms. This observation coupled with the fact that they
guarantee low variance of return,make them attractive for implementation in risk-constrained
systems.

Observation 4 RS-SPSA, which is based on an actor-critic architecture, outperforms
TAMAR, which employs a policy gradient approach.
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Conclusions

For discounted and average reward MDPs, we

I define a set of (variance-related) risk-sensitive criteria

I show how to estimate the gradient of these risk-sensitive criteria

I propose actor-critic algorithms to optimize these risk-sensitive criteria

I establish the asymptotic convergence of the algorithms

I demonstrate their usefulness in a traffic signal control problem
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Value-at-Risk (VaR)
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Cumulative Distribution F (z) = P(Z ≤ z)

Value-at-Risk at the Confidence Level α ∈ (0, 1)

VaRα(Z) = min{z | F (z) ≥ α}
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Properties of VaR

VaRα(Z) = min{z | F (z) ≥ α}

I when F is continuous and strictly increasing, VaRα(Z) is the
unique z satisfying F (z) = α

I otherwise, VaRα(Z) can have no solution or a whole range of
solutions

I often numerically unstable and difficult to work with

I is not a coherent risk measure

I does not quantify the losses that might be suffered beyond its value
at the (1− α)-tail of the distribution (Rockafellar & Uryasev, 2000)
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Conditional Value-at-Risk (CVaR)
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Conditional Value-at-Risk at the Confidence Level α ∈ (0, 1)

CVaRα(Z) = E
[
Z | Z ≥ VaRα(Z)

]
coherent risk measure

A Different Formula for CVaR (Rockafellar & Uryasev, 2002)

CVaRα(Z) = min
ν∈R

Hα(Z, ν)
4
= min

ν∈R

{
ν +

1

1− αE
[max(Z−ν,0)︷ ︸︸ ︷

(Z − ν)+ ]}
Hα(Z, ν) is finite and convex, hence continuous, as a function of ν
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Mean-CVaR Optimization

Optimization Problem (Rockafellar & Uryasev, 2000, 2002)

min
µ

V µ(x0) s.t. CVaRα
(
Dµ(x0)

)
≤ β

Nice Property of CVaR Optimization (Bäuerle & Ott, 2011)

I there exists a deterministic history-dependent optimal policy for
CVaR optimization

I does not depend on the complete history, just the accumulated
discounted cost

at time t, only depends on xt and
t−1∑

k=0

γkC(xk, ak)
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Mean-CVaR Optimization

Optimization Problem

min
µ
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Dµ(x0)
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~w�
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~w�
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λ≥0
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θ,ν
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L(θ, ν, λ)

4
= V θ(x0) + λ

(
Hα

(
Dθ(x0), ν

)
− β

))

The goal is to find the saddle point of L(θ, ν, λ)

(θ∗, ν∗, λ∗) s.t L(θ, ν, λ∗) ≥ L(θ∗, ν∗, λ∗) ≥ L(θ∗, ν∗, λ) ∀θ, ν, ∀λ > 0
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Computing the Gradients

Computing the Gradients ∇θL(θ, ν, λ), ∂νL(θ, ν, λ), ∇λL(θ, ν, λ)

∇θL(θ, ν, λ) = ∇θV θ(x0) +
λ

(1− α)
∇θE

[(
Dθ(x0)− ν

)+]

∂νL(θ, ν, λ) = λ

(
1 +

1

(1− α)
∂νE

[(
Dθ(x0)− ν

)+])
3 λ
(

1− 1

(1− α)
P
(
Dθ(x0) ≥ ν

))

∇λL(θ, ν, λ) = ν +
1

(1− α)
E
[(
Dθ(x0)− ν

)+]− β

3 means that the term is a member of the sub-gradient set ∂νL(θ, ν, λ)
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Mean-CVaR Optimization

Policy Gradient Algorithm for Mean-CVaR Optimization
Input: parameterized policy µ(·|·; θ), confidence level α, loss tolerance β
Init: Policy parameter θ = θ0, VaR parameter ν = ν0, Lagrangian parameter λ = λ0

for i = 0, 1, 2, . . . do
for j = 1, 2, . . . do

Generate N trajectories {ξj,i}Nj=1, starting at x0 = x0 & following the policy θi
end for

ν Update: νi+1 = Γν

[
νi − ζ3(i)

(
λi −

λi

(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

})]

θ Update: θi+1 = Γθ

[
θi − ζ2(i)

(
1

N

N∑
j=1

∇θ log Pθ(ξj,i)|θ=θiD(ξj,i)

+
λi

(1− α)N

N∑
j=1

∇θ log Pθ(ξj,i)|θ=θi
(
D(ξj,i)− νi

)
1
{
D(ξj,i) ≥ νi

})]

λ Update: λi+1 = Γλ

[
λi + ζ1(i)

(
νi − β +

1

(1− α)N

N∑
j=1

(
D(ξj,i)− νi

)
1
{
D(ξj,i) ≥ νi

})]
end for
return parameters ν, θ, λ

three time-scale stochastic approximation algorithm
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Main Problem of VaR and CVaR Optimization

I sampling-based approaches to quantile estimation (including VaR and
CVaR) suffer from high variance

I only αN among N samples are effective
(more variance for α close to 1)

I using importance sampling for variance reduction
(Bardou et al., 2009; Tamar et al., 2015)

ν Update: νi+1 = Γν

[
νi − ζ3(i)

(
λi −

λi

(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

})]
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Other Notes on Mean-CVaR Optimization Algorithm

I estimating ν is in fact estimating VaRα

I we can also estimate ν using the empirical α-quantile

ν̂ = min
z
F̂ (z) ≥ α

F̂ (z) =
1

N

N∑

i=1

1
{
D(ξi) ≤ z

}
(empirical C.D.F.)
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Actor-Critic Algorithms for Mean-CVaR Optimization
Original MDP M = (X ,A, C, P, P0)

Augmented MDP M̄ = (X̄ , Ā, C̄, P̄ , P̄0)

X̄ = X × R, Ā = A, P̄0(x, s) = P0(x)1{s0 = s}

C̄(x, s, a) =

{
λ(−s)+/(1− α) if x = xT ,

C(x, a) otherwise.

P̄ (x′, s′|x, s, a) =

{
P (x′|x, a) if s′ =

(
s− C(x, a)

)
/γ,

0 otherwise.

xT : a terminal state of M

sT : value of the s-part of the state at a terminal state xT after T steps

sT =
1

γT

[
ν −

T−1∑
t=0

γtC(xt, at)
]
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Actor-Critic Algorithms for Mean-CVaR Optimization

∇θL(θ, ν, λ) = ∇θ


V θ(x0,ν)︷ ︸︸ ︷

E
[
Dθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+]


∇λL(θ, ν, λ) = ν − β +∇λ

E
[
Dθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+]
︸ ︷︷ ︸

V θ(x0,ν)



V θ(x0, ν): value function of policy θ at state (x0, ν) in augmented MDP M̄
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Experimental Results
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American Option Pricing Problem (Chow & MGH, 2014)

Problem Description
State: vector of cost and time xt = (ct, t)

Action: accept the present cost or wait (2 actions)

Cost:
c(xt) =

{
ct if price is accepted or t = T,

ph otherwise.

Dynamics: xt+1 = (ct+1, t+ 1), and

ct+1 =

{
fuct w.p. p,
fdct w.p. 1− p.

Aim: find a risk-sensitive control strategy that minimizes the total
cost, while also avoiding large values of total cost
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Results - American Option Pricing Problem
Policy Gradient mean-CVaR optimization α = 0.95, β = 3
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Results - American Option Pricing Problem
Actor-Critic mean-CVaR optimization α = 0.95, β = 3
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Results - American Option Pricing Problem
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E[Dθ(x0)] σ[Dθ(x0)] CVaR[Dθ(x0)]
PG 1.177 1.065 4.464

PG-CVaR 1.997 0.060 2.000
AC 1.113 0.607 3.331

AC-CVaR-SPSA 1.326 0.322 2.145
AC-CVaR 1.343 0.346 2.208

Risk-Neutral PG and AC have much heavier tail than RS-PG and RS-AC
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Expected Exponential Utility
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Expected Exponential Utility

Expected Exponential Loss

Objective: to find a policy µ∗ such that

µ∗ = arg min
µ

(
λµ

∆
= lim sup

n→∞

1

βT
logE

[
eβ

∑T−1
t=0 γtC

(
Xt,µ(Xt)

)])

Similarity to Mean-Variance Optimization

1

βT
logE

[
eβ

∑T−1
t=0 γtC

(
Xt,µ(Xt)

)]
≈ E

[
Dµ(x0)

]
+
β

2
Var

[
Dµ(x0)

]
+O(β2)

How to choose the mean-variance tradeoff β ???
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Expected Exponential Loss
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∆
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Expected Exponential Utility

Expected Exponential Loss

Objective: to find a policy µ∗ such that

µ∗ = arg min
µ

(
λµ

∆
= lim sup

n→∞

1

T
logE

[
e
∑T−1
t=0 C

(
Xt,µ(Xt)

)])

DP Equation: is non-linear eigenvalue problem

λ∗V ∗(x) = min
a∈A

(
eC(x,a)

∑
x′∈X

P (x′|x, a)V ∗(x′)

)
, ∀x ∈ X (deterministic)

V ∗(x) = min
µ

(∑
a∈A

µ(a|x)
eC(x,a)

λ∗

∑
x′∈X

P (x′|x, a)V ∗(x′)

)
, ∀x ∈ X (stochastic)
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Value Iteration for Expected Exponential Loss

I Fix x0 ∈ X and pick an arbitrary initial guess V0

I At each iteration k, for all x ∈ X , do

Ṽk+1(x) = min
a∈A

(
eC(x,a)

∑
x′∈X

P (x′|x, a)Vk(x′)

)

Vk+1(x) =
Ṽk+1(x)

Ṽk+1(x0)

I converges to V ∗ with λ∗ = V ∗(x0)
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Policy Iteration for Expected Exponential Loss

I Pick an arbitrary initial guess µ0

I At each iteration k, solve the principle eigenvalue problem
(policy evaluation)

λkVk(x) = eC
(
x,µk(x)

) ∑
x′∈X

P
(
x′|x, µk(x)

)
Vk(x′), ∀x ∈ X , with Vk(x0) = 1

I For all x ∈ X , set (policy improvement - greedification)

µk+1(x) ∈ arg min
a∈A

(
eC(x,a)

∑
x′∈X

P (x′|x, a)Vk(x′)

)

I (Vk, λk) converges to (V ∗, λ∗) with V ∗(x0) = 1
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Q-Learning for Expected Exponential Loss
Action-value Function

Qµ(x, a) =
eC(x,a)

λµ

∑
x′∈X

P (x′|x, a)V µ(x′)

DP Equation

Q∗(x, a) =
eC(x,a)

λ∗

∑
x′∈X

P (x′|x, a) min
a′∈A

Q∗(x′, a′)

Q-value Iteration (∀x ∈ X , ∀a ∈ A , fix x0 ∈ X , a0 ∈ A)

Q̃k+1(x, a) = eC(x,a)
∑
x′∈X

P (x′|x, a) min
a′∈A

Qk(x′, a′), Qk+1(x, a) =
Q̃k+1(x, a)

Q̃k+1(x0, a0)

Q-Learning

Qk+1(x, a) = Qk(x, a) + ζ(k)

(
eC(x,a)

Qk(x0, a0)
min
a′∈A

Qk(x′, a′)−Qk(x, a)

)
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Actor-Critic for Expected Exponential Loss

DP Eq. for Policy θ

V θ(x) =
∑
a∈A

µ(a|x; θ)
eC(x,a)

λθ

∑
x′∈X

P (x′|x, a)V θ(x′)

Markov Chain Induced by Policy θ

P θ(x′|x) =

∑
a∈A µ(a|x; θ)eC(x,a)P (x′|x, a)V θ(x′)

λθV θ(x)

with stationary distributions dθ(x) and πθ(x, a) = dθ(x)µ(a|x; θ)
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Actor-Critic for Expected Exponential Loss

Gradient of the Performance Measure

∇θ log(λθ) =
∇θλθ

λθ
=
∑
x,a

πθ(x, a)∇θµ(a|x; θ)qθ(x, a)

=
∑

x,a6=a0
πθ(x, a)∇θµ(a|x; θ)

[
qθ(x, a)− qθ(x0, a0)

]

where

qθ(x, a) =
eC(x,a)

V θ(x)λθ

∑
x′∈X

P (x′|x, a)V θ(x′)
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Actor-Critic for Expected Exponential Loss

Critic Update

q(xt, at) = q(xt, at) + ζ2(t)

(
eC(xt,at)q(xt+1, at+1)

q(x0, a0)
− q(xt, at)

)

Actor Update

θt+1 = θt − ζ1(t)∇θµ(at|xt; θ)
[
qθ(xt, at)− qθ(x0, a0)

]

Two Time-Scale Stochastic Approximation

ζ1(t) = o
(
ζ2(t)

)
, lim

t→∞

ζ1(t)

ζ2(t)
= 0
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