

Risk-averse Decision-making & Control

Marek Petrik University of New Hampshire

Mohammad Ghavamzadeh Adobe Research & INRIA

February 4, 2017

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization

Mean-CVaR Optimization

Expected Exponential Utility

Outline

Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization Discounted Reward Setting Policy Evaluation (Estimating Mean and Variance) Policy Gradient Algorithms Actor-Critic Algorithms Average Reward Setting

Mean-CVaR Optimization

Expected Exponential Utility

Sequential Decision-Making under Uncertainty

- Move around in the physical world (navigation)
- Play and win a game
- Control the throughput of a power plant (process control)
- Manage a portfolio (finance)
- Medical diagnosis and treatment

Reinforcement Learning (RL)

- RL: A class of learning problems in which an agent interacts with a dynamic, stochastic, and incompletely known environment
- ► Goal: Learn an action-selection strategy, or *policy*, to optimize some measure of its long-term performance
- Interaction: Modeled as a MDP

Markov Decision Process

MDP

- An MDP \mathcal{M} is a tuple $\langle \mathcal{X}, \mathcal{A}, R, P, P_0 \rangle$.
- X: set of states
- A: set of actions
- R(x, a): reward random variable,

$$r(x,a) = \mathbb{E}\big[R(x,a)\big]$$

- $P(\cdot|x,a)$: transition probability distribution
- $P_0(\cdot)$: initial state distribution
- Stationary Policy: a distribution over actions, conditioned on the current state $\mu(\cdot|x)$

Discounted Reward MDPs

For a given policy μ

Return

$$D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^t R(x_t, a_t) \mid x_0 = x, \ \mu$$

Discounted Reward MDPs

For a given policy μ

Return $D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^t R(x_t,a_t) \mid x_0 = x, \; \mu$

Risk-Neutral Objective

$$\mu^* = \arg\max_{\mu} \sum_{x \in \mathcal{X}} P_0(x) V^{\mu}(x)$$

where $V^{\mu}(x) = \mathbb{E}[D^{\mu}(x)].$

Discounted Reward MDPs

For a given policy μ

Return

$$D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t}, a_{t}) \mid x_{0} = x, \ \mu$$

Risk-Neutral Objective (for simplicity)

$$\mu^* = \arg\max_{\mu} V^{\mu}(x^0)$$

$$x^0$$
 is the initial state, i.e., $P_0(x) = \delta(x - x^0)$.

Average Reward MDPs

For a given policy μ

Average Reward

$$\rho(\mu) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}\left[\sum_{t=0}^{T-1} R_t \mid \mu\right]$$

Average Reward MDPs

For a given policy μ

Average Reward

$$\rho(\mu) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} R_t \mid \mu \right] = \sum_{x,a} \pi^{\mu}(x,a) r(x,a)$$

Average Reward MDPs

For a given policy μ

Average Reward

$$\rho(\mu) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} R_t \mid \mu \right] = \sum_{x,a} \pi^{\mu}(x,a) r(x,a)$$

 $\pi^{\mu}(x,a)$: stationary dist. of state-action pair (x,a) under policy μ .

Average Reward MDPs

For a given policy μ

Average Reward

$$\rho(\mu) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} R_t \mid \mu \right] = \sum_{x,a} \pi^{\mu}(x,a) r(x,a)$$

 $\pi^{\mu}(x,a)$: stationary dist. of state-action pair (x,a) under policy μ .

Risk-Neutral Objective

$$\mu^* = \operatorname*{arg\,max}_{\mu} \rho(\mu)$$

Return Random Variable

Return Random Variable

Policy μ

M. Ghavamzadeh - Risk-averse Decision-making & Control

Return

Return Random Variable

Policy μ

Trajectory 2

M. Ghavamzadeh - Risk-averse Decision-making & Control

Policy μ

Policy μ

Adobe

M. Ghavamzadeh – Risk-averse Decision-making & Control

Outline

Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization Discounted Reward Setting Policy Evaluation (Estimating Mean and Variance) Policy Gradient Algorithms Actor-Critic Algorithms Average Reward Setting

Mean-CVaR Optimization

Expected Exponential Utility

Risk-Sensitive Sequential Decision-Making

$$\underbrace{D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t}, a_{t}) \mid x_{0} = x, \ \mu}^{return}$$

Risk-Sensitive Sequential Decision-Making

$$\overbrace{D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t}, a_{t}) \mid x_{0} = x, \ \mu}^{return}$$

> a criterion that penalizes the *variability* induced by a given policy

Risk-Sensitive Sequential Decision-Making

$$\overbrace{D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t}, a_{t}) \mid x_{0} = x, \ \mu}^{\text{return random variable}}$$

- > a criterion that penalizes the *variability* induced by a given policy
- minimize some measure of *risk* as well as maximizing the usual optimization criterion

Objective: to optimize a risk-sensitive criterion such as

- expected exponential utility (Howard & Matheson 1972, Whittle 1990)
- variance-related measures (Sobel 1982; Filar et al. 1989)
- percentile performance (Filar et al. 1995)

Objective: to optimize a risk-sensitive criterion such as

- expected exponential utility (Howard & Matheson 1972, Whittle 1990)
- variance-related measures (Sobel 1982; Filar et al. 1989)
- percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria

Objective: to optimize a risk-sensitive criterion such as

- expected exponential utility (Howard & Matheson 1972, Whittle 1990)
- variance-related measures (Sobel 1982; Filar et al. 1989)
- percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria

mainly negative results

(e.g., Sobel 1982; Filar et al., 1989; Mannor & Tsitsiklis, 2011)

Risk-Sensitive Sequential Decision-Making

Return

Risk-Sensitive Sequential Decision-Making

Adobe

Risk-Sensitive Sequential Decision-Making

Adobe

Risk-Sensitive Sequential Decision-Making

Adobe

Risk-Sensitive Sequential Decision-Making

Adobe
Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Adobe

M. Ghavamzadeh - Risk-averse Decision-making & Control

Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

M. Ghavamzadeh - Risk-averse Decision-making & Control

Risk-Sensitive Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

long history in operations research

- most work has been in the context of MDPs (model is known)
- much less work in reinforcement learning (RL) framework

Risk-Sensitive RL

- expected exponential utility (Borkar 2001, 2002)
- variance-related measures (Tamar et al., 2012, 2013; Prashanth & MGH, 2013, 2016)
- CVaR optimization (Chow & MGH, 2014; Tamar et al., 2015)
- coherent risk measures (Tamar, Chow, MGH, Mannor, 2015, 2017)

Outline

Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization

Discounted Reward Setting Policy Evaluation (Estimating Mean and Variance) Policy Gradient Algorithms Actor-Critic Algorithms Average Reward Setting

Mean-CVaR Optimization

Expected Exponential Utility

Mean-Variance Optimization

Mean-Variance Optimization

M. Ghavamzadeh – Risk-averse Decision-making & Control

Outline

Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization

Discounted Reward Setting Policy Evaluation (Estimating Mean and Variance) Policy Gradient Algorithms Actor-Critic Algorithms Average Reward Setting

Mean-CVaR Optimization

Expected Exponential Utility

Mean-Variance Optimization Discounted Reward Setting

Discounted Reward Setting

M. Ghavamzadeh – Risk-averse Decision-making & Control

Discounted Reward MDPs

Return

$$D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t}, a_{t}) \mid x_{0} = x, \ \mu$$

Mean of Return (value function)

$$V^{\mu}(x) = \mathbb{E}\big[D^{\mu}(x)\big]$$

Variance of Return (measure of variability)

$$\Lambda^{\mu}(x) = \mathbb{E}\left[D^{\mu}(x)^{2}\right] - V^{\mu}(x)^{2} = U^{\mu}(x) - V^{\mu}(x)^{2}$$

Policy Evaluation (Estimating Mean and Variance)

- 1. A. Tamar, D. Di Castro, and S. Mannor. "Temporal Difference Methods for the Variance of the Reward To Go". ICML-2013.
- A. Tamar, D. Di Castro, and S. Mannor. "Learning the Variance of the Reward-To-Go". JMLR-2016.

Value Function

Return

$$D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t}, a_{t}) \mid x_{0} = x, \ \mu$$

Value Function (mean of return) $V^{\mu}: \mathcal{X} \to \mathbb{R}$

$$V^{\mu}(x) = \mathbb{E}\big[D^{\mu}(x)\big]$$

Action-value Function

Return

$$D^{\mu}(x,a) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t},a_{t}) \mid x_{0} = x, \ a_{0} = a, \ \mu$$

Action-value Function (mean of return)

 $Q^{\mu}: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$

$$Q^{\mu}(x,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(X_t, A_t) \mid X_0 = x, \ A_0 = a, \ \mu\right]$$

Bellman Equation

For a policy $\boldsymbol{\mu}$

Bellman Equation for Value Function

$$V^{\mu}(x) = r\left(x, \mu(x)\right) + \gamma \sum_{x' \in \mathcal{X}} P\left(x'|x, \mu(x)\right) V^{\mu}(x')$$

Bellman Equation for Action-value Function

$$Q^{\mu}(x,a) = r(x,a) + \gamma \sum_{x' \in \mathcal{X}} P(x'|x,a) V^{\mu}(x')$$
$$= r(x,a) + \gamma \sum_{x' \in \mathcal{X}} P(x'|x,a) Q^{\mu}(x',\mu(x'))$$

Variance of Return

Variance of Return (measure of variability)

$$\Lambda^{\mu}(x) = \underbrace{\mathbb{E}\left[D^{\mu}(x)^{2}\right]}^{U^{\mu}(x)} - V^{\mu}(x)^{2}$$

Square Reward Value Function

$$U^{\mu}(x) = \mathbb{E}\left[D^{\mu}(x)^2\right]$$

Square Reward Action-value Function

$$W^{\mu}(x,a) = \mathbb{E}\left[D^{\mu}(x,a)^2\right]$$

Bellman Equation for Variance (Sobel, 1982)

For a policy $\boldsymbol{\mu}$

• Bellman Equation for Square Reward Value Function

$$U^{\mu}(x) = r(x,\mu(x))^{2} + \gamma^{2} \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) U^{\mu}(x')$$
$$+ 2\gamma r(x,\mu(x)) \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x')$$

Bellman Equation for Square Reward Action-value Function

$$W^{\mu}(x,a) = r(x,a)^2 + \gamma^2 \sum_{x' \in \mathcal{X}} P(x'|x,a) U^{\mu}(x')$$
$$+ 2\gamma r(x,a) \sum_{x' \in \mathcal{X}} P(x'|x,a) V^{\mu}(x')$$

Dynamic Programming for Optimizing Variance (Sobel, 1982)

V is amenable to optimization with *policy iteration*

 $V^{\mu_1}(x) \ge V^{\mu_2}(x), \ \forall x \in \mathcal{X} \quad \Longrightarrow \quad Q^{\mu_1}(x,a) \ge Q^{\mu_2}(x,a), \ \forall x \in \mathcal{X}, \ \forall a \in \mathcal{A}$

 Λ is not amenable to optimization with policy iteration

 $\Lambda^{\mu_1}(x) \geq \Lambda^{\mu_2}(x), \ \forall x \in \mathcal{X} \quad \Longrightarrow \quad \Lambda^{\mu_1}(x,a) \geq \Lambda^{\mu_2}(x,a), \ \forall x \in \mathcal{X}, \ \forall a \in \mathcal{A}$

Dynamic Programming for Optimizing Variance

 \boldsymbol{U} alone does $\boldsymbol{\mathsf{not}}$ satisfy the implication

$$U^{\mu_1}(x) \ge U^{\mu_2}(x), \ \forall x \in \mathcal{X} \quad \Longrightarrow \quad W^{\mu_1}(x,a) \ge W^{\mu_2}(x,a), \ \forall x \in \mathcal{X}, \ \forall a \in \mathcal{A}$$

but U and V together ${\bf do}$

$$\begin{cases} V^{\mu_1}(x) \ge V^{\mu_2}(x), \ \forall x \in \mathcal{X} \\ \\ U^{\mu_1}(x) \ge U^{\mu_2}(x), \ \forall x \in \mathcal{X} \end{cases} \implies W^{\mu_1}(x,a) \ge W^{\mu_2}(x,a), \ \forall x \in \mathcal{X}, \ \forall a \in \mathcal{A} \end{cases}$$

Bellman Equation for Variance

Bellman equation for U^{μ} is linear in V^{μ} and U^{μ}

$$U^{\mu}(x) = r(x,\mu(x))^{2} + \gamma^{2} \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) U^{\mu}(x')$$
$$+ 2\gamma r(x,\mu(x)) \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x')$$

Bellman equation for Λ^{μ} is **not** linear in V^{μ} and Λ^{μ}

$$\Lambda^{\mu}(x) = U^{\mu}(x) - V^{\mu}(x)^2$$

M. Ghavamzadeh – Risk-averse Decision-making & Control

TD Methods for Variance

$$\begin{cases} V^{\mu}(x) = r(x,\mu(x)) + \gamma \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x') \\ U^{\mu}(x) = r(x,\mu(x))^{2} + \gamma^{2} \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) U^{\mu}(x') \\ + 2\gamma r(x,\mu(x)) \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x') \end{cases}$$
(1)

solution to (1) may be expressed as the fixed point of a linear mapping in the joint space V and U

TD Methods for Variance

$$\begin{cases}
 V^{\mu}(x) = \overbrace{r(x,\mu(x)) + \gamma \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x')}^{[\mathcal{T}^{\mu}Z]_{V}(x)} \\
 U^{\mu}(x) = \overbrace{r(x,\mu(x))^{2} + \gamma^{2} \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) U^{\mu}(x')}^{[\mathcal{T}^{\mu}Z]_{U}(x)} \\
 + \underbrace{2\gamma r(x,\mu(x)) \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x')}_{[\mathcal{T}^{\mu}Z]_{U}(x)}
\end{cases} (1)$$

solution to (1) may be expressed as the fixed point of a linear mapping in the joint space V and U

$$\mathcal{T}^{\mu}: \mathbb{R}^{2|\mathcal{X}|} \to \mathbb{R}^{2|\mathcal{X}|} \quad , \quad Z = (Z_V \in \mathbb{R}^{|\mathcal{X}|}, Z_U \in \mathbb{R}^{|\mathcal{X}|}) \quad , \quad \mathcal{T}^{\mu} Z = Z$$

TD Methods for Variance

$$\begin{cases}
 V^{\mu}(x) = \overline{r(x,\mu(x)) + \gamma \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x')} \\
 V^{\mu}(x) = \overline{r(x,\mu(x))^{2} + \gamma^{2} \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) U^{\mu}(x')} \\
 + \underbrace{2\gamma r(x,\mu(x)) \sum_{x' \in \mathcal{X}} P(x'|x,\mu(x)) V^{\mu}(x')}_{[\mathcal{T}^{\mu}Z]_{U}(x)}
 \end{cases}$$
(1)

 projection of this mapping onto a linear feature space is contracting (allowing us to use TD methods)

$$S_{V} = \{ v^{\top} \phi_{v}(x) \mid v \in \mathbb{R}^{\kappa_{2}}, x \in \mathcal{X} \} \quad , \qquad S_{U} = \{ u^{\top} \phi_{u}(x) \mid u \in \mathbb{R}^{\kappa_{3}}, x \in \mathcal{X} \}$$
$$\Pi_{V} : \mathbb{R}^{|\mathcal{X}|} \to S_{V} \quad , \quad \Pi_{U} : \mathbb{R}^{|\mathcal{X}|} \to S_{U} \quad , \quad \Pi = \begin{pmatrix} \Pi_{V} & 0\\ 0 & \Pi_{U} \end{pmatrix} \quad , \quad Z = \Pi \mathcal{T}^{\mu} Z$$

Adobe

TD(0) Algorithm for Variance

TD(0) for Variance (Tamar et al., 2013)

 $v_{t+1} = v_t + \zeta(t)\delta_t\phi_v(x_t) \qquad \qquad u_{t+1} = u_t + \zeta(t)\epsilon_t\phi_u(x_t)$

where the TD-errors δ_t and ϵ_t are computed as

$$\delta_t = r(x_t, a_t) + \gamma v_t^\top \phi_v(x_{t+1}) - v_t^\top \phi_v(x_t)$$

$$\epsilon_t = r(x_t, a_t)^2 + 2\gamma r(x_t, a_t) v_t^\top \phi_v(x_{t+1}) + \gamma^2 u_t^\top \phi_u(x_{t+1}) - u_t^\top \phi_u(x_t)$$

Relevant Publications

- T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka. "Parametric return density estimation for reinforcement learning". arXiv, 2012
- M. Sato, H. Kimura, and S. Kobayashi. "TD algorithm for the variance of return and mean-variance reinforcement learning". Transactions of the Japanese Society for Artificial Intelligence, 2001.
- M. Sobel, "The variance of discounted Markov decision processes". Applied Probability, 1982.
- 4. A. Tamar, D. Di Castro, and S. Mannor. "Temporal Difference Methods for the Variance of the Reward To Go". ICML, 2013.
- A. Tamar, D. Di Castro, and S. Mannor. "Learning the Variance of the Reward-To-Go". JMLR, 2016.

Mean-Variance Optimization Discounted Reward Setting

Policy Gradient Algorithms

 A. Tamar, D. Di Castro, and S. Mannor. "Policy Gradients with Variance Related Risk Criteria". ICML-2012.

M. Ghavamzadeh - Risk-averse Decision-making & Control

Discounted Reward MDPs

Return

$$D^{\mu}(x) = \sum_{t=0}^{\infty} \gamma^{t} R(x_{t}, a_{t}) \mid x_{0} = x, \ \mu$$

Mean of Return (value function)

$$V^{\mu}(x) = \mathbb{E}\big[D^{\mu}(x)\big]$$

Variance of Return (measure of variability)

$$\Lambda^{\mu}(x) = \mathbb{E}\left[D^{\mu}(x)^{2}\right] - V^{\mu}(x)^{2} = U^{\mu}(x) - V^{\mu}(x)^{2}$$

Discounted Reward MDPs

Risk-Sensitive Criteria

- 1. Maximize $V^{\mu}(x^0)$ s.t. $\Lambda^{\mu}(x^0) < \alpha$
- 2. Minimize $\Lambda^{\mu}(x^0)$ s.t. $V^{\mu}(x^0) > \alpha$
- 3. Maximize the Sharpe Ratio: $V^{\mu}(x^0)/\sqrt{\Lambda^{\mu}(x^0)}$
- 4. Maximize $V^{\mu}(x^0) \alpha \Lambda^{\mu}(x^0)$

Mean-Variance Optimization for Discounted MDPs

Optimization Problem

$$\max_{\mu} V^{\mu}(x^{0}) \quad \text{s.t.} \quad \Lambda^{\mu}(x^{0}) \leq \alpha$$

$$\lim_{\theta} L_{\lambda}(\theta) \stackrel{\triangle}{=} V^{\theta}(x^{0}) - \lambda \underbrace{\Gamma(\Lambda^{\theta}(x^{0}) - \alpha)}_{\Gamma(\Lambda^{\theta}(x^{0}) - \alpha)}$$

A class of parameterized stochastic policies

$$\left\{\mu(\cdot|x;\theta), \; x \in \mathcal{X}, \; \theta \in \Theta \subseteq \mathbb{R}^{\kappa_1}\right\}$$

Mean-Variance Optimization for Discounted MDPs

Optimization Problem

$$\max_{\mu} V^{\mu}(x^{0}) \quad \text{s.t.} \quad \Lambda^{\mu}(x^{0}) \leq \alpha$$

$$\lim_{\theta \to \infty} L_{\lambda}(\theta) \stackrel{\triangle}{=} V^{\theta}(x^{0}) - \lambda \underbrace{\Gamma(\Lambda^{\theta}(x^{0}) - \alpha)}_{\Gamma(\Lambda^{\theta}(x^{0}) - \alpha)}$$

A class of parameterized stochastic policies

$$\left\{\mu(\cdot|x;\theta),\; x\in\mathcal{X},\; \theta\in\Theta\subseteq\mathbb{R}^{\kappa_1}\right\}$$

To tune $\boldsymbol{\theta}\text{, one needs to evaluate}$

$$\nabla_{\theta} L_{\lambda}(\theta) = \nabla_{\theta} V^{\theta}(x^{0}) - \lambda \Gamma' (\Lambda^{\theta}(x^{0}) - \alpha) \nabla_{\theta} \Lambda^{\theta}(x^{0})$$

Computing the Gradient

Computing the Gradient $\nabla_{\theta} L_{\lambda}(\theta)$

 $\nabla_{\theta} V^{\theta}(x^{0}) = \mathbb{E}_{\xi} \left[D(\xi) \ \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right]$

$$\nabla_{\theta} \Lambda^{\theta}(x^{0}) = \mathbb{E}_{\xi} \left[D(\xi)^{2} \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right] - 2V^{\theta}(x^{0}) \nabla_{\theta} V^{\theta}(x^{0})$$

A **System Trajectory** of length τ generated by policy θ :

$$\xi = (x_0 = x^0, a_0 \sim \mu(\cdot | x_0), x_1, a_1 \sim \mu(\cdot | x_1), \dots, x_{\tau-1}, a_{\tau-1} \sim \mu(\cdot | x_{\tau-1}))$$

Computing the Gradient

Computing the Gradient $\nabla_{\theta} L_{\lambda}(\theta)$

$$\nabla_{\theta} V^{\theta}(x^{0}) = \mathbb{E}_{\xi} \left[D(\xi) \ \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right]$$

 $\nabla_{\theta} \Lambda^{\theta}(x^{0}) = \mathbb{E}_{\xi} \left[D(\xi)^{2} \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right] - 2V^{\theta}(x^{0}) \nabla_{\theta} V^{\theta}(x^{0})$

$$abla_{ heta} \log \mathbb{P}(\xi|\theta) = \sum_{t=0}^{\tau-1} \nabla_{\theta} \log \mu(a_t|x_t;\theta)$$

A System Trajectory of length τ generated by policy θ : $\xi = \left(x_0 = x^0, a_0 \sim \mu(\cdot|x_0), x_1, a_1 \sim \mu(\cdot|x_1), \dots, x_{\tau-1}, a_{\tau-1} \sim \mu(\cdot|x_{\tau-1})\right)$

 $\nabla_{\theta} L_{\lambda}(\theta) = \nabla_{\theta} V^{\theta}(x^{0}) - \lambda \Gamma' \left(\Lambda^{\theta}(x^{0}) - \alpha \right) \nabla_{\theta} \Lambda^{\theta}(x^{0})$

M. Ghavamzadeh – Risk-averse Decision-making & Control

 $\nabla_{\theta} L_{\lambda}(\theta) = \nabla_{\theta} V^{\theta}(x^{0}) - \lambda \Gamma' \left(\Lambda^{\theta}(x^{0}) - \alpha \right) \nabla_{\theta} \Lambda^{\theta}(x^{0})$

 $\begin{aligned} \nabla_{\theta} V^{\theta}(x^{0}) &= \mathbb{E}_{\xi} \left[D(\xi) \ \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right] \\ \nabla_{\theta} \Lambda^{\theta}(x^{0}) &= \mathbb{E}_{\xi} \left[D(\xi)^{2} \ \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right] - 2V^{\theta}(x^{0}) \ \nabla_{\theta} V^{\theta}(x^{0}) \end{aligned}$

$$\nabla_{\theta} L_{\lambda}(\theta) = \nabla_{\theta} V^{\theta}(x^{0}) - \lambda \Gamma' \left(\Lambda^{\theta}(x^{0}) - \alpha \right) \nabla_{\theta} \Lambda^{\theta}(x^{0})$$

$$\begin{aligned} \nabla_{\theta} V^{\theta}(x^{0}) &= \mathbb{E}_{\xi} \left[D(\xi) \ \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right] \\ \nabla_{\theta} \Lambda^{\theta}(x^{0}) &= \mathbb{E}_{\xi} \left[D(\xi)^{2} \ \nabla_{\theta} \log \mathbb{P}(\xi|\theta) \right] - 2V^{\theta}(x^{0}) \ \nabla_{\theta} V^{\theta}(x^{0}) \end{aligned}$$

At each iteration k, the algorithm

• Generates a trajectory ξ_k by following the policy θ_k and

Update the parameters as

 $\widehat{V}_{k+1} = \widehat{V}_k + \frac{\zeta_2(k)}{(D(\xi_k) - \widehat{V}_k)}$

$$\widehat{\Lambda}_{k+1} = \widehat{\Lambda}_k + \frac{\zeta_2(k)}{(D(\xi_k)^2 - \widehat{V}_k^2 - \widehat{\Lambda}_k)}$$

 $\theta_{k+1} = \theta_k + \frac{\zeta_1(k)}{D(\xi_k)} \Big(D(\xi_k) - \lambda \Gamma'(\widehat{\Lambda}_{k+1} - \alpha) \big(D(\xi_k)^2 - 2\widehat{V}_{k+1} D(\xi_k) \big) \Big) \nabla_{\theta} \log \mathbb{P}(\xi_k | \theta_k)$

At each iteration k, the algorithm

- Generates a trajectory ξ_k by following the policy θ_k and
- Update the parameters as

$$\widehat{V}_{k+1} = \widehat{V}_k + \frac{\zeta_2(k)}{D(\xi_k)} - \widehat{V}_k$$

$$\widehat{\Lambda}_{k+1} = \widehat{\Lambda}_k + \frac{\zeta_2(k)}{(D(\xi_k)^2 - \widehat{V}_k^2 - \widehat{\Lambda}_k)}$$

$$\theta_{k+1} = \theta_k + \frac{\zeta_1(k)}{D(\xi_k)} \Big(D(\xi_k) - \lambda \Gamma'(\widehat{\Lambda}_{k+1} - \alpha) \big(D(\xi_k)^2 - 2\widehat{V}_{k+1}D(\xi_k) \big) \Big) \nabla_{\theta} \log \mathbb{P}(\xi_k | \theta_k)$$

step-sizes $\{\zeta_2(k)\}$ and $\{\zeta_1(k)\}$ are chosen such that the mean and variance updates are on the faster time-scale than the policy parameter.

$$\zeta_1(k) = o(\zeta_2(k))$$
 or equivalently $\lim_{k \to \infty} \frac{\zeta_1(k)}{\zeta_2(k)} = 0$

Risk-Sensitive Policy Gradient Algorithms (Optimizing Sharpe Ratio)

At each iteration k, the algorithm

- Generates a trajectory ξ_k by following the policy θ_k and
- Update the parameters as

$$\widehat{V}_{k+1} = \widehat{V}_k + \frac{\zeta_2(k)}{(D(\xi_k) - \widehat{V}_k)}$$

$$\widehat{\Lambda}_{k+1} = \widehat{\Lambda}_k + \frac{\zeta_2(k)}{(D(\xi_k)^2 - \widehat{V}_k^2 - \widehat{\Lambda}_k)}$$

$$\theta_{k+1} = \theta_k + \frac{\zeta_1(k)}{\sqrt{\widehat{\Lambda}_{k+1}}} \left(D(\xi_k) - \frac{\widehat{V}_{k+1}D(\xi_k)^2 - 2D(\xi_k)\widehat{V}_{k+1}^2}{2\widehat{\Lambda}_{k+1}} \right) \nabla_\theta \log \mathbb{P}(\xi_k|\theta_k)$$

Risk-Sensitive Policy Gradient Algorithms (Optimizing Sharpe Ratio)

At each iteration k, the algorithm

- Generates a trajectory ξ_k by following the policy θ_k and
- Update the parameters as

$$\widehat{V}_{k+1} = \widehat{V}_k + \frac{\zeta_2(k)}{D(\xi_k)} \left(D(\xi_k) - \widehat{V}_k \right)$$

$$\widehat{\Lambda}_{k+1} = \widehat{\Lambda}_k + \frac{\zeta_2(k)}{(D(\xi_k)^2 - \widehat{V}_k^2 - \widehat{\Lambda}_k)}$$

$$\theta_{k+1} = \theta_k + \frac{\zeta_1(k)}{\sqrt{\widehat{\Lambda}_{k+1}}} \left(D(\xi_k) - \frac{\widehat{V}_{k+1} D(\xi_k)^2 - 2D(\xi_k) \widehat{V}_{k+1}^2}{2\widehat{\Lambda}_{k+1}} \right) \nabla_\theta \log \mathbb{P}(\xi_k | \theta_k)$$

two time-scale stochastic approximation algorithm

Mean-Variance Optimization Discounted Reward Setting

Experimental Results

M. Ghavamzadeh – Risk-averse Decision-making & Control
Simple Portfolio Management Problem (Tamar et al., 2012)

Problem Description

State: $x_t \in \mathbb{R}^{N+2}$

 $x_t^{(1)} \in [0,1]$ fraction of investment in liquid assets

 $x_t^{(2)},\ldots,x_t^{(N+1)}\in[0,1]\,$ fraction of investment in non-liquid assets with time to maturity $1,\ldots,N$ time steps

 $\boldsymbol{x}_t^{(N+2)}$ deviation of interest rate of non-liquid assets from its mean

Action: investing a fraction α of the total available cash in a non-liquid asset

Cost: logarithm of the return from the investment

Aim: find a risk-sensitive investment strategy to mix liquid assets with fixed interest rate & risky non-liquid assets with time-variant interest rate

Results - Simple Portfolio Management Problem

risk neutral - mean-var - Sharpe Ratio

Summary - Risk-Sensitive Policy Gradient Algorithms

- Algorithms can be implemented as single time-scale (generating several trajectories from each policy & then update)
- λ is assumed to be *fixed* (selecting λ from a list) (learning λ adds another time-scale to the algorithm)
- The unit of observation is a system trajectory (not state-action pair)
 - algorithms are *simple* (+)
 - better-suited to un-discounted problems (episodic)
 - unbiased estimates of the gradient (+)
 - high variance estimates of the gradient (variance grows with the length of the trajectories)

(-)

Mean-Variance Optimization Discounted Reward Setting

Actor-Critic Algorithms

- Prashanth L. A. and MGH. "Actor-Critic Algorithms for Risk-Sensitive MDPs". NIPS-2013.
- Prashanth L. A. and MGH. "Variance-constrained Actor-Critic Algorithms for Discounted and Average Reward MDPs". MLJ-2016.

Mean-Variance Optimization for Discounted MDPs

Optimization Problem

A class of *parameterized stochastic policies*

$$\left\{\mu(\cdot|x;\theta), \; x \in \mathcal{X}, \; \theta \in \Theta \subseteq \mathbb{R}^{\kappa_1}\right\}$$

Mean-Variance Optimization for Discounted MDPs

Optimization Problem

A class of *parameterized stochastic policies*

$$\left\{\mu(\cdot|x;\theta), \ x \in \mathcal{X}, \ \theta \in \Theta \subseteq \mathbb{R}^{\kappa_1}\right\}$$

One needs to evaluate $\nabla_{\theta} L(\theta,\lambda)$ and $\nabla_{\lambda} L(\theta,\lambda)$ to tune θ and λ

Mean-Variance Optimization for Discounted MDPs

Optimization Problem

A class of *parameterized stochastic policies* $\left\{\mu(\cdot|x;\theta), \ x \in \mathcal{X}, \ \theta \in \Theta \subseteq \mathbb{R}^{\kappa_1}\right\}$

One needs to evaluate $\nabla_{\theta} L(\theta,\lambda)$ and $\nabla_{\lambda} L(\theta,\lambda)$ to tune θ and λ

The goal is to find the *saddle point* of $L(\theta, \lambda)$

 $(\theta^*,\lambda^*) \qquad \text{s.t} \qquad L(\theta,\lambda^*) \geq L(\theta^*,\lambda^*) \geq L(\theta^*,\lambda) \qquad \forall \theta, \forall \lambda > 0$

Computing the Gradients

Computing the Gradient $\nabla_{\theta} L(\theta, \lambda)$

$$(1-\gamma)\nabla_{\theta}V^{\theta}(x^{0}) = \sum_{x,a} \pi^{\theta}_{\gamma}(x,a|x^{0}) \nabla_{\theta} \log \mu(a|x;\theta) Q^{\theta}(x,a)$$

$$(1 - \gamma^2) \nabla_{\theta} U^{\theta}(x^0) = \sum_{x,a} \widetilde{\pi}^{\theta}_{\gamma}(x, a | x^0) \nabla_{\theta} \log \mu(a | x; \theta) W^{\theta}(x, a) + 2\gamma \sum_{x,a,x'} \widetilde{\pi}^{\theta}_{\gamma}(x, a | x^0) P(x' | x, a) r(x, a) \nabla_{\theta} V^{\theta}(x')$$

 $\pi^\theta_\gamma(x,a|x^0)~~{\rm and}~~\widetilde{\pi}^\theta_\gamma(x,a|x^0)$ are γ and γ^2 discounted visiting state distributions of the Markov chain under policy θ

Why Estimating the Gradient is Challenging?

Computing the Gradient $\nabla_{\theta} L(\theta, \lambda)$

$$(1-\gamma)\nabla_{\theta}V^{\theta}(x^{0}) = \sum_{x,a} \pi^{\theta}_{\gamma}(x,a|x^{0}) \nabla_{\theta} \log \mu(a|x;\theta) Q^{\theta}(x,a)$$

$$(1 - \gamma^2) \nabla_{\theta} U^{\theta}(x^0) = \sum_{x,a} \widetilde{\pi}^{\theta}_{\gamma}(x, a | x^0) \nabla_{\theta} \log \mu(a | x; \theta) W^{\theta}(x, a) + 2\gamma \sum_{x,a,x'} \widetilde{\pi}^{\theta}_{\gamma}(x, a | x^0) P(x' | x, a) r(x, a) \nabla_{\theta} V^{\theta}(x')$$

 $\pi^\theta_\gamma(x,a|x^0)~~{\rm and}~~\widetilde{\pi}^\theta_\gamma(x,a|x^0)$ are $\gamma~{\rm and}~\gamma^2$ discounted visiting state distributions of the Markov chain under policy θ

Why Estimating the Gradient is Challenging?

Computing the Gradient $\nabla_{\theta} L(\theta, \lambda)$

$$(1-\gamma)\nabla_{\theta}V^{\theta}(x^{0}) = \sum_{x,a} \pi^{\theta}_{\gamma}(x,a|x^{0}) \nabla_{\theta} \log \mu(a|x;\theta) Q^{\theta}(x,a)$$

$$(1 - \gamma^2) \nabla_{\theta} U^{\theta}(x^0) = \sum_{x,a} \widetilde{\pi}^{\theta}_{\gamma}(x, a | x^0) \nabla_{\theta} \log \mu(a | x; \theta) W^{\theta}(x, a) + 2\gamma \sum_{x,a,x'} \widetilde{\pi}^{\theta}_{\gamma}(x, a | x^0) P(x' | x, a) r(x, a) \nabla_{\theta} V^{\theta}(x')$$

 $\pi^\theta_\gamma(x,a|x^0)~~{\rm and}~~\widetilde{\pi}^\theta_\gamma(x,a|x^0)$ are γ and γ^2 discounted visiting state distributions of the Markov chain under policy θ

Simultaneous Perturbation (SP) Methods

Idea: Estimate the gradients $\nabla_{\theta} V^{\theta}(x^0)$ and $\nabla_{\theta} U^{\theta}(x^0)$ using two simulated trajectories of the system corresponding to policies with parameters θ and $\theta^+ = \theta + \beta \Delta, \ \beta > 0.$

Our actor-critic algorithms are based on two SP methods

- 1. Simultaneous Perturbation Stochastic Approximation (SPSA)
- 2. Smoothed Functional (SF)

Simultaneous Perturbation Methods

SPSA Gradient Estimate

$$\partial_{\theta^{(i)}} \widehat{V}^{\theta}(x^0) \approx \frac{\widehat{V}^{\theta+\beta\Delta}(x^0) - \widehat{V}^{\theta}(x^0)}{\beta\Delta^{(i)}}, \qquad i = 1, \dots, \kappa_1$$

 Δ is a vector of independent Rademacher random variables

SF Gradient Estimate

$$\partial_{\theta^{(i)}} \widehat{V}^{\theta}(x^0) \quad \approx \quad \frac{\Delta^{(i)}}{\beta} \left(\widehat{V}^{\theta + \beta \Delta}(x^0) - \widehat{V}^{\theta}(x^0) \right), \qquad \quad i = 1, \dots, \kappa_1$$

 Δ is a vector of independent Gaussian $\mathcal{N}(0,1)$ random variables

Trajectory 1 take action $a_t \sim \mu(\cdot | x_t; \theta_t)$, observe reward $r(x_t, a_t)$ and next state x_{t+1}

Trajectory 2 take action $a_t^+ \sim \mu(\cdot|x_t^+;\theta_t^+)$, observe reward $r(x_t^+,a_t^+)$ and next state x_{t+1}^+

- Critic update the critic parameters v_t,v_t^+ for value and u_t,u_t^+ for square value functions in a TD-like fashion
- Actor estimate $\nabla V^{\theta}(x^0)$ and $\nabla U^{\theta}(x^0)$ using SPSA or SF and update the policy parameter θ and the Lagrange multiplier λ

Critic Updates (Tamar et al., 2013)

$$v_{t+1} = v_t + \zeta_3(t)\delta_t\phi_v(x_t)$$

$$u_{t+1} = u_t + \zeta_3(t)\epsilon_t\phi_u(x_t)$$

$$v_{t+1}^{+} = v_{t}^{+} + \zeta_{3}(t)\delta_{t}^{+}\phi_{v}(x_{t}^{+})$$
$$u_{t+1}^{+} = u_{t}^{+} + \zeta_{3}(t)\epsilon_{t}^{+}\phi_{u}(x_{t}^{+})$$

where the TD-errors $\delta_t, \delta_t^+, \epsilon_t, \epsilon_t^+$ are computed as

$$\begin{split} \delta_{t} &= r(x_{t}, a_{t}) + \gamma v_{t}^{\top} \phi_{v}(x_{t+1}) - v_{t}^{\top} \phi_{v}(x_{t}) \\ \delta_{t}^{+} &= r(x_{t}^{+}, a_{t}^{+}) + \gamma v_{t}^{+\top} \phi_{v}(x_{t+1}^{+}) - v_{t}^{+\top} \phi_{v}(x_{t}^{+}) \\ \epsilon_{t} &= r(x_{t}, a_{t})^{2} + 2\gamma r(x_{t}, a_{t}) v_{t}^{\top} \phi_{v}(x_{t+1}) + \gamma^{2} u_{t}^{\top} \phi_{u}(x_{t+1}) - u_{t}^{\top} \phi_{u}(x_{t}) \\ \epsilon_{t}^{+} &= r(x_{t}^{+}, a_{t}^{+})^{2} + 2\gamma r(x_{t}^{+}, a_{t}^{+}) v_{t}^{+\top} \phi_{v}(x_{t+1}^{+}) + \gamma^{2} u_{t}^{+\top} \phi_{u}(x_{t+1}^{+}) - u_{t}^{+\top} \phi_{u}(x_{t}^{+}) \end{split}$$

Actor Updates

$$\begin{aligned} \theta_{t+1}^{(i)} &= \Gamma_{i} \left[\theta_{t}^{(i)} + \frac{\zeta_{2}(t)}{\beta \Delta_{t}^{(i)}} \Big(\big(1 + 2\lambda_{t} v_{t}^{\top} \phi_{v}(x^{0}) \big) (v_{t}^{+} - v_{t})^{\top} \phi_{v}(x^{0}) - \lambda_{t} (u_{t}^{+} - u_{t})^{\top} \phi_{u}(x^{0}) \Big) \right] \\ (SPSA) \\ \theta_{t+1}^{(i)} &= \Gamma_{i} \left[\theta_{t}^{(i)} + \frac{\zeta_{2}(t) \Delta_{t}^{(i)}}{\beta} \Big(\big(1 + 2\lambda_{t} v_{t}^{\top} \phi_{v}(x^{0}) \big) (v_{t}^{+} - v_{t})^{\top} \phi_{v}(x^{0}) - \lambda_{t} (u_{t}^{+} - u_{t})^{\top} \phi_{u}(x^{0}) \Big) \Big) \right] \\ (SF) \\ \lambda_{t+1} &= \Gamma_{\lambda} \left[\lambda_{t} + \zeta_{1}(t) \Big(u_{t}^{\top} \phi_{u}(x^{0}) - \big(v_{t}^{\top} \phi_{v}(x^{0}) \big)^{2} - \alpha \Big) \right] \end{aligned}$$

Actor Updates

$$\begin{aligned} \theta_{t+1}^{(i)} &= \Gamma_{i} \left[\theta_{t}^{(i)} + \frac{\zeta_{2}(t)}{\beta \Delta_{t}^{(i)}} \left(\left(1 + 2\lambda_{t} v_{t}^{\top} \phi_{v}(x^{0}) \right) (v_{t}^{+} - v_{t})^{\top} \phi_{v}(x^{0}) - \lambda_{t} (u_{t}^{+} - u_{t})^{\top} \phi_{u}(x^{0}) \right) \right) \right] \\ (SPSA) \\ \theta_{t+1}^{(i)} &= \Gamma_{i} \left[\theta_{t}^{(i)} + \frac{\zeta_{2}(t) \Delta_{t}^{(i)}}{\beta} \left(\left(1 + 2\lambda_{t} v_{t}^{\top} \phi_{v}(x^{0}) \right) (v_{t}^{+} - v_{t})^{\top} \phi_{v}(x^{0}) - \lambda_{t} (u_{t}^{+} - u_{t})^{\top} \phi_{u}(x^{0}) \right) \right) \\ (SF) \\ \lambda_{t+1} &= \Gamma_{\lambda} \left[\lambda_{t} + \zeta_{1}(t) \left(u_{t}^{\top} \phi_{u}(x^{0}) - (v_{t}^{\top} \phi_{v}(x^{0}))^{2} - \alpha \right) \right] \end{aligned}$$

step-sizes { $\zeta_3(t)$ }, { $\zeta_2(t)$ }, and { $\zeta_1(t)$ } are chosen such that the critic, policy parameter, and Lagrange multiplier updates are on the fastest, intermediate, and slowest time-scales, respectively.

Actor Updates

$$\begin{aligned} \theta_{t+1}^{(i)} &= \Gamma_{i} \left[\theta_{t}^{(i)} + \frac{\zeta_{2}(t)}{\beta \Delta_{t}^{(i)}} \left(\left(1 + 2\lambda_{t} v_{t}^{\top} \phi_{v}(x^{0}) \right) (v_{t}^{+} - v_{t})^{\top} \phi_{v}(x^{0}) - \lambda_{t} (u_{t}^{+} - u_{t})^{\top} \phi_{u}(x^{0}) \right) \right) \right] \\ (SPSA) \\ \theta_{t+1}^{(i)} &= \Gamma_{i} \left[\theta_{t}^{(i)} + \frac{\zeta_{2}(t) \Delta_{t}^{(i)}}{\beta} \left(\left(1 + 2\lambda_{t} v_{t}^{\top} \phi_{v}(x^{0}) \right) (v_{t}^{+} - v_{t})^{\top} \phi_{v}(x^{0}) - \lambda_{t} (u_{t}^{+} - u_{t})^{\top} \phi_{u}(x^{0}) \right) \right] \\ (SF) \\ \lambda_{t+1} &= \Gamma_{\lambda} \left[\lambda_{t} + \zeta_{1}(t) \left(u_{t}^{\top} \phi_{u}(x^{0}) - \left(v_{t}^{\top} \phi_{v}(x^{0}) \right)^{2} - \alpha \right) \right] \end{aligned}$$

step-sizes { $\zeta_3(t)$ }, { $\zeta_2(t)$ }, and { $\zeta_1(t)$ } are chosen such that the critic, policy parameter, and Lagrange multiplier updates are on the fastest, intermediate, and slowest time-scales, respectively.

three time-scale stochastic approximation algorithm

Outline

Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization Discounted Reward Setting Policy Evaluation (Estimating Mean and Variance) Policy Gradient Algorithms Actor-Critic Algorithms Average Reward Setting

Mean-CVaR Optimization

Expected Exponential Utility

Mean-Variance Optimization Average Reward Setting

Average Reward Setting

M. Ghavamzadeh – Risk-averse Decision-making & Control

Average Reward Setting

Average Reward MDPs

Average Reward

$$\rho(\mu) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} R_t \mid \mu \right] = \sum_{x,a} \pi^{\mu}(x,a) r(x,a)$$

Long-Run Variance (measure of variability)

$$\Lambda(\mu) = \sum_{x,a} \pi^{\mu}(x,a) \left[r(x,a) - \rho(\mu) \right]^2 = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \left(R_t - \rho(\mu) \right)^2 | \mu \right]$$

The frequency of visiting state-action pairs, $\pi^{\mu}(x, a)$, determines the variability in the average reward.

Average Reward Setting

Average Reward MDPs

Average Reward

$$\rho(\mu) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} R_t \mid \mu \right] = \sum_{x,a} \pi^{\mu}(x,a) r(x,a)$$

Long-Run Variance (measure of variability)

$$\Lambda(\mu) = \sum_{x,a} \pi^{\mu}(x,a) \left[r(x,a) - \rho(\mu) \right]^2 = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \left(R_t - \rho(\mu) \right)^2 \mid \mu \right]$$

$$= \eta(\mu) - \rho(\mu)^2$$
, where $\eta(\mu) = \sum_{x,a} \pi^{\mu}(x,a) r(x,a)^2$

Mean-Variance Optimization for Average Reward MDPs

Optimization Problem

One needs to evaluate $\nabla_{\theta} L(\theta, \lambda)$ and $\nabla_{\lambda} L(\theta, \lambda)$ to tune θ and λ

Computing the Gradients

Computing the Gradient $\nabla_{\theta} L(\theta, \lambda)$

$$\nabla \rho(\theta) = \sum_{x,a} \pi(x,a;\theta) \nabla \log \mu(a|x;\theta) Q(x,a;\theta)$$
$$\nabla \eta(\theta) = \sum_{x,a} \pi(x,a;\theta) \nabla \log \mu(a|x;\theta) W(x,a;\theta)$$

 U^{μ} and W^{μ} are the differential value and action-value functions associated with the square reward, satisfying the following Poisson equations:

$$\begin{split} \eta(\mu) + U^{\mu}(x) &= \sum_{a} \mu(a|x) \left[r(x,a)^{2} + \sum_{x'} P(x'|x,a) U^{\mu}(x') \right] \\ \eta(\mu) + W^{\mu}(x,a) &= r(x,a)^{2} + \sum_{x'} P(x'|x,a) U^{\mu}(x') \end{split}$$

Input: policy $\mu(\cdot|\cdot;\theta)$ and value function feature vectors $\phi_n(\cdot)$ and $\phi_n(\cdot)$ **Initialization:** policy parameters $\theta = \theta_0$; value function weight vectors $v = v_0$ and $u = u_0$; initial state $x_0 \sim P_0(x)$ for $t = 0, 1, 2, \dots$ do Draw action $a_t \sim \mu(\cdot | x_t; \theta_t)$ and observe reward $R(x_t, a_t)$ and next state x_{t+1} Average Updates: $\widehat{\rho}_{t+1} = (1 - \zeta_4(t))\widehat{\rho}_t + \zeta_4(t)R(x_t, a_t)$ $\widehat{\eta}_{t+1} = (1 - \zeta_4(t))\widehat{\eta}_t + \zeta_4(t)R(x_t, a_t)^2$ **TD Errors:** $\delta_t = R(x_t, a_t) - \hat{\rho}_{t+1} + v_t^{\top} \phi_v(x_{t+1}) - v_t^{\top} \phi_v(x_t)$ $\epsilon_t = R(x_t, a_t)^2 - \widehat{\eta}_{t+1} + u_t^{\top} \phi_u(x_{t+1}) - u_t^{\top} \phi_u(x_t)$ **Critic Update:** $v_{t+1} = v_t + \zeta_3(t)\delta_t\phi_u(x_t), \qquad u_{t+1} = u_t + \zeta_3(t)\epsilon_t\phi_u(x_t)$ Actor Update: $\theta_{t+1} = \Gamma \Big(\theta_t - \zeta_2(t) \big(-\delta_t \psi_t + \lambda_t (\epsilon_t \psi_t - 2\widehat{\rho}_{t+1} \delta_t \psi_t) \big) \Big)$ $\lambda_{t+1} = \Gamma_{\lambda} \left(\lambda_t + \zeta_1(t) (\widehat{\eta}_{t+1} - \widehat{\rho}_{t+1}^2 - \alpha) \right)$

end for

return policy and value function parameters θ, λ, v, u

Input: policy $\mu(\cdot|\cdot;\theta)$ and value function feature vectors $\phi_v(\cdot)$ and $\phi_u(\cdot)$ **Initialization:** policy parameters $\theta = \theta_0$; value function weight vectors $v = v_0$ and $u = u_0$; initial state $x_0 \sim P_0(x)$ for $t = 0, 1, 2, \dots$ do Draw action $a_t \sim \mu(\cdot|x_t; \theta_t)$ and observe reward $R(x_t, a_t)$ and next state x_{t+1} Average Updates: $\hat{\rho}_{t+1} = (1 - \zeta_4(t))\hat{\rho}_t + \zeta_4(t)R(x_t, a_t)$ $\widehat{\eta}_{t+1} = (1 - \zeta_4(t))\widehat{\eta}_t + \zeta_4(t)R(x_t, a_t)^2$ **TD Errors:** $\delta_t = R(x_t, a_t) - \widehat{\rho}_{t+1} + v_t^\top \phi_v(x_{t+1}) - v_t^\top \phi_v(x_t)$ $\epsilon_t = R(x_{t,a_t})^2 - \widehat{n}_{t+1} + u_t^{\top} \phi_u(x_{t+1}) - u_t^{\top} \phi_u(x_t)$ Critic Update: $v_{t+1} = v_t + \zeta_3(t)\delta_t\phi_v(x_t), \qquad u_{t+1} = u_t + \zeta_3(t)\epsilon_t\phi_u(x_t)$ Actor Update: $\theta_{t+1} = \Gamma \Big(\theta_t - \zeta_2(t) \big(-\delta_t \psi_t + \lambda_t (\epsilon_t \psi_t - 2\widehat{\rho}_{t+1} \delta_t \psi_t) \big) \Big)$ $\lambda_{t+1} = \Gamma_{\lambda} \left(\lambda_t + \zeta_1(t) (\widehat{\eta}_{t+1} - \widehat{\rho}_{t+1}^2 - \alpha) \right)$ end for

return policy and value function parameters θ,λ,v,u

Input: policy $\mu(\cdot|\cdot;\theta)$ and value function feature vectors $\phi_v(\cdot)$ and $\phi_u(\cdot)$ **Initialization:** policy parameters $\theta = \theta_0$; value function weight vectors $v = v_0$ and $u = u_0$; initial state $x_0 \sim P_0(x)$ for $t = 0, 1, 2, \dots$ do Draw action $a_t \sim \mu(\cdot|x_t; \theta_t)$ and observe reward $R(x_t, a_t)$ and next state x_{t+1} Average Updates: $\hat{\rho}_{t+1} = (1 - \zeta_4(t))\hat{\rho}_t + \zeta_4(t)R(x_t, a_t)$ $\widehat{\eta}_{t+1} = (1 - \zeta_4(t))\widehat{\eta}_t + \zeta_4(t)R(x_t, a_t)^2$ **TD Errors:** $\delta_t = R(x_t, a_t) - \widehat{\rho}_{t+1} + v_t^\top \phi_v(x_{t+1}) - v_t^\top \phi_v(x_t)$ $\epsilon_t = R(x_{t,a_t})^2 - \widehat{n}_{t+1} + u_t^{\top} \phi_u(x_{t+1}) - u_t^{\top} \phi_u(x_t)$ Critic Update: $v_{t+1} = v_t + \zeta_3(t)\delta_t\phi_v(x_t), \qquad u_{t+1} = u_t + \zeta_3(t)\epsilon_t\phi_u(x_t)$ Actor Update: $\theta_{t+1} = \Gamma \Big(\theta_t - \zeta_2(t) \big(-\delta_t \psi_t + \lambda_t (\epsilon_t \psi_t - 2\widehat{\rho}_{t+1} \delta_t \psi_t) \big) \Big)$ $\lambda_{t+1} = \Gamma_{\lambda} \left(\lambda_t + \zeta_1(t) (\widehat{\eta}_{t+1} - \widehat{\rho}_{t+1}^2 - \alpha) \right)$ end for

return policy and value function parameters θ, λ, v, u

three time-scale stochastic approximation algorithm

Mean-Variance Optimization Average Reward Setting

Experimental Results

M. Ghavamzadeh – Risk-averse Decision-making & Control

Traffic Signal Control Problem (Prashanth & MGH, 2016)

Problem Description

State: vector of queue lengths and elapsed times $x_t = (q_1, \ldots, q_N, t_1, \ldots, t_N)$

Action: feasible sign configurations

Cost:

$$h(x_t) = r_1 * \big[\sum_{i \in I_p} r_2 * q_i(t) + \sum_{i \notin I_p} s_2 * q_i(t) \big] + s_1 * \big[\sum_{i \in I_p} r_2 * t_i(t) + \sum_{i \notin I_p} s_2 * t_i(t) \big]$$

Aim: find a risk-sensitive control strategy that minimizes the total delay experienced by road users, while also reducing the variations

Results - Discounted Reward Setting

Distribution of $D^{\theta}(x^0)$

Total arrived drivers

	Total Arrived Drivers	
Algorithm	Risk-Neutral	Risk-Sensitive
SPSA-G	754.84 ± 317.06	622.38 ± 28.36

M. Ghavamzadeh - Risk-averse Decision-making & Control

Results - Discounted Reward Setting

Distribution of $D^{\theta}(x^0)$

Total arrived drivers

	Total Arrived Drivers	
Algorithm	Risk-Neutral	Risk-Sensitive
SF-G	832.34 ± 82.24	810.82 ± 36.56

Results - Actor-Critic vs. Policy Gradient

Results - Average Reward Setting

Conclusions

For *discounted* and *average* reward MDPs, we

- define a set of (variance-related) risk-sensitive criteria
- show how to estimate the gradient of these risk-sensitive criteria
- propose actor-critic algorithms to optimize these risk-sensitive criteria
- establish the asymptotic convergence of the algorithms
- demonstrate their usefulness in a traffic signal control problem

Relevant Publications

- 1. J. Filar, L. Kallenberg, and H. Lee. "Variance-penalized Markov decision processes". Mathematics of OR, 1989.
- 2. P. Geibel and F. Wysotzki. "Risk-sensitive reinforcement learning applied to control under constraints". JAIR, 2005.
- R. Howard and J. Matheson. "Risk-sensitive Markov decision processes". Management Science, 1972.
- 4. Prashanth L. A. and MGH. "Actor-Critic Algorithms for Risk-Sensitive MDPs". NIPS, 2013.
- 5. Prashanth L. A. and **MGH**. "Variance-constrained Actor-Critic Algorithms for Discounted and Average Reward MDPs". MLJ, 2016.
- M. Sobel. "The variance of discounted Markov decision processes". Applied Probability, 1982.
- 7. A. Tamar, D. Di Castro, and S. Mannor. "Policy Gradients with Variance Related Risk Criteria". ICML, 2012.
- 8. A. Tamar, D. Di Castro, and S. Mannor. "Temporal difference methods for the variance of the reward to go". ICML, 2013.

Outline

Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization Discounted Reward Setting Policy Evaluation (Estimating Mean and Variance) Policy Gradient Algorithms Actor-Critic Algorithms Average Reward Setting

Mean-CVaR Optimization

Expected Exponential Utility

Mean-CVaR Optimization

- 1. Y. Chow and MGH. "Algorithms for CVaR Optimization in MDPs". NIPS-2014.
- Y. Chow, MGH, L. Janson, and M. Pavone. "Risk-Constrained Reinforcement Learning with Percentile Risk Criteria". JMLR-2017.
- 3. A. Tamar, Y. Glassner, and S. Mannor. "Optimizing the CVaR via Sampling". AAAI-2015.

Value-at-Risk (VaR)

Cumulative Distribution

 $F(z) = \mathbb{P}(Z \le z)$

Value-at-Risk at the Confidence Level $\alpha \in (0, 1)$

$$\mathsf{VaR}_{\alpha}(Z) = \min\{z \mid F(z) \ge \alpha\}$$

Properties of VaR

$\mathsf{VaR}_{\alpha}(Z) = \min\{z \mid F(z) \ge \alpha\}$

- When F is continuous and strictly increasing, VaR_α(Z) is the unique z satisfying F(z) = α
- ▶ otherwise, VaR_α(Z) can have *no solution* or *a whole range of solutions*
- often numerically unstable and difficult to work with
- is not a coherent risk measure
- does not quantify the losses that might be suffered beyond its value at the (1 – α)-tail of the distribution (Rockafellar & Uryasev, 2000)

Conditional Value-at-Risk (CVaR)

Conditional Value-at-Risk at the Confidence Level $\alpha \in (0, 1)$

 $\mathsf{CVaR}_{\alpha}(Z) = \mathbb{E}\big[Z \mid Z \ge \mathsf{VaR}_{\alpha}(Z)\big]$

coherent risk measure

Conditional Value-at-Risk (CVaR)

Conditional Value-at-Risk at the Confidence Level $\alpha \in (0, 1)$

$$\mathsf{CVaR}_{\alpha}(Z) = \mathbb{E}[Z \mid Z \ge \mathsf{VaR}_{\alpha}(Z)]$$
 coherent risk measure

A Different Formula for CVaR (Rockafellar & Uryasev, 2002)

$$\mathsf{CVaR}_{\alpha}(Z) = \min_{\nu \in \mathbb{R}} \ H_{\alpha}(Z,\nu) \stackrel{\triangle}{=} \min_{\nu \in \mathbb{R}} \ \left\{ \nu + \frac{1}{1-\alpha} \mathbb{E}\Big[\underbrace{\overbrace{(Z-\nu)^{+}}^{\max(Z-\nu,0)}}_{(Z-\nu)^{+}} \Big] \right\}$$

Conditional Value-at-Risk (CVaR)

Conditional Value-at-Risk at the Confidence Level $\alpha \in (0, 1)$

$$\mathsf{CVaR}_{\alpha}(Z) = \mathbb{E}[Z \mid Z \ge \mathsf{VaR}_{\alpha}(Z)]$$
 coherent risk measure

A Different Formula for CVaR (Rockafellar & Uryasev, 2002)

$$\mathsf{CVaR}_{\alpha}(Z) = \min_{\nu \in \mathbb{R}} \ H_{\alpha}(Z, \nu) \stackrel{\triangle}{=} \min_{\nu \in \mathbb{R}} \ \left\{ \nu + \frac{1}{1 - \alpha} \mathbb{E}\Big[\underbrace{\max_{\nu \in \mathbb{R}} (Z - \nu)^+}_{(Z - \nu)^+} \Big] \right\}$$

 $H_{\alpha}(Z,\nu)$ is finite and convex, hence continuous, as a function of ν

M. Ghavamzadeh - Risk-averse Decision-making & Control

Mean-CVaR Optimization

Optimization Problem (Rockafellar & Uryasev, 2000, 2002)

$$\min_{\mu} V^{\mu}(x^{0}) \qquad \text{ s.t. } \qquad \mathsf{CVaR}_{\alpha}\big(D^{\mu}(x^{0})\big) \leq \beta$$

M. Ghavamzadeh – Risk-averse Decision-making & Control

Mean-CVaR Optimization

Optimization Problem (Rockafellar & Uryasev, 2000, 2002)

$$\min_{\mu} V^{\mu}(x^{0}) \qquad \text{ s.t. } \qquad \mathsf{CVaR}_{\alpha}\big(D^{\mu}(x^{0})\big) \leq \beta$$

Nice Property of CVaR Optimization (Bäuerle & Ott, 2011)

- there exists a *deterministic history-dependent* optimal policy for CVaR optimization
- does not depend on the complete history, just the *accumulated discounted cost*

at time
$$t$$
, only depends on x_t and $\sum_{k=0}^{t-1} \gamma^k C(x_k, a_k)$

Mean-CVaR Optimization

Optimization Problem

Mean-CVaR Optimization

Optimization Problem

The goal is to find the *saddle point* of $L(\theta, \nu, \lambda)$

 $(\theta^*,\nu^*,\lambda^*) \quad \text{ s.t } \quad L(\theta,\nu,\lambda^*) \geq L(\theta^*,\nu^*,\lambda^*) \geq L(\theta^*,\nu^*,\lambda) \quad \forall \theta,\nu,\forall \lambda > 0$

Computing the Gradients

Computing the Gradients $\nabla_{\theta} L(\theta, \nu, \lambda), \ \partial_{\nu} L(\theta, \nu, \lambda), \ \nabla_{\lambda} L(\theta, \nu, \lambda)$

$$\nabla_{\theta} L(\theta, \nu, \lambda) = \nabla_{\theta} V^{\theta}(x^{0}) + \frac{\lambda}{(1-\alpha)} \nabla_{\theta} \mathbb{E}\Big[\left(D^{\theta}(x^{0}) - \nu \right)^{+} \Big]$$

$$\partial_{\nu} L(\theta, \nu, \lambda) = \lambda \left(1 + \frac{1}{(1-\alpha)} \partial_{\nu} \mathbb{E} \left[\left(D^{\theta}(x^{0}) - \nu \right)^{+} \right] \right)$$
$$\ni \lambda \left(1 - \frac{1}{(1-\alpha)} \mathbb{P} \left(D^{\theta}(x^{0}) \ge \nu \right) \right)$$

$$\nabla_{\lambda} L(\theta, \nu, \lambda) = \nu + \frac{1}{(1-\alpha)} \mathbb{E}\Big[\left(D^{\theta}(x^{0}) - \nu \right)^{+} \Big] - \beta$$

 \ni means that the term is a member of the sub-gradient set $\partial_{
u} L(heta,
u,\lambda)$

Policy Gradient Algorithm for Mean-CVaR Optimization

Input: parameterized policy $\mu(\cdot|\cdot;\theta)$, confidence level α , loss tolerance β **Init:** Policy parameter $\theta = \theta_0$, VaR parameter $\nu = \nu_0$, Lagrangian parameter $\lambda = \lambda_0$ for $i = 0, 1, 2, \dots$ do for j = 1, 2, ... do Generate N trajectories $\{\xi_{j,i}\}_{i=1}^N$, starting at $x_0=x^0$ & following the policy θ_i end for $\nu \text{ Update: } \nu_{i+1} = \Gamma_{\nu} \left[\nu_i - \frac{\zeta_3(i)}{(1-\alpha)N} \sum_{i=1}^N \mathbf{1} \{ D(\xi_{j,i}) \ge \nu_i \} \right) \right]$ θ Update: $\theta_{i+1} = \Gamma_{\theta} \left[\theta_i - \zeta_2(i) \left(\frac{1}{N} \sum_{i=1}^N \nabla_{\theta} \log \mathbb{P}_{\theta}(\xi_{j,i}) |_{\theta = \theta_i} D(\xi_{j,i}) \right) \right]$ $+ \frac{\lambda_i}{(1-\alpha)N} \sum_{i=1}^{i} \nabla_{\theta} \log \mathbb{P}_{\theta}(\xi_{j,i})|_{\theta=\theta_i} \left(D(\xi_{j,i}) - \nu_i \right) \mathbf{1} \left\{ D(\xi_{j,i}) \ge \nu_i \right\} \right) \bigg]$

 $\lambda \text{ Update: } \lambda_{i+1} = \Gamma_{\lambda} \left[\lambda_i + \zeta_1(i) \left(\nu_i - \beta + \frac{1}{(1-\alpha)N} \sum_{j=1}^N \left(D(\xi_{j,i}) - \nu_i \right) \mathbf{1} \left\{ D(\xi_{j,i}) \ge \nu_i \right\} \right) \right]$ end for return parameters ν, θ, λ

three time-scale stochastic approximation algorithm

M. Ghavamzadeh – Risk-averse Decision-making & Control

Main Problem of VaR and CVaR Optimization

- sampling-based approaches to quantile estimation (including VaR and CVaR) suffer from high variance
- only αN among N samples are effective (more variance for α close to 1)
- using *importance sampling* for variance reduction (*Bardou et al., 2009; Tamar et al., 2015*)

$$\nu \quad \textit{Update:} \qquad \nu_{i+1} = \Gamma_{\nu} \bigg[\nu_i - \zeta_3(i) \bigg(\lambda_i - \frac{\lambda_i}{(1-\alpha)N} \sum_{j=1}^N \mathbf{1} \big\{ D(\xi_{j,i}) \ge \nu_i \big\} \bigg) \bigg]$$

Other Notes on Mean-CVaR Optimization Algorithm

• estimating ν is in fact estimating VaR $_{\alpha}$

 \blacktriangleright we can also estimate ν using the empirical $\alpha\text{-quantile}$

$$\begin{aligned} \widehat{\nu} &= \min_{z} \widehat{F}(z) \geq \alpha \\ \widehat{F}(z) &= \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} \big\{ D(\xi_i) \leq z \big\} \end{aligned} \tag{empirical C.D.F.}$$

Actor-Critic Algorithms for Mean-CVaR Optimization

Original MDP $\mathcal{M} = (\mathcal{X}, \mathcal{A}, C, P, P_0)$

Augmented MDP

$$\bar{\mathcal{M}} = (\bar{\mathcal{X}}, \bar{\mathcal{A}}, \bar{C}, \bar{P}, \bar{P}_0)$$

 $\bar{\mathcal{X}} = \mathcal{X} \times \mathbb{R}, \qquad \quad \bar{\mathcal{A}} = \mathcal{A}, \qquad \quad \bar{P}_0(x, s) = P_0(x) \mathbf{1}\{s_0 = s\}$

$$\bar{C}(x,s,a) = \begin{cases} \lambda(-s)^+/(1-\alpha) & \text{if } x = x_T, \\ C(x,a) & \text{otherwise.} \end{cases}$$

$$\bar{P}(x',s'|x,s,a) = \begin{cases} P(x'|x,a) & \text{if } s' = (s - C(x,a))/\gamma, \\ 0 & \text{otherwise.} \end{cases}$$

- x_T : a terminal state of \mathcal{M}
- s_T : value of the s-part of the state at a terminal state x_T after T steps

$$s_T = \frac{1}{\gamma^T} \left[\nu - \sum_{t=0}^{T-1} \gamma^t C(x_t, a_t) \right]$$

M. Ghavamzadeh - Risk-averse Decision-making & Control

Actor-Critic Algorithms for Mean-CVaR Optimization

$$\nabla_{\theta} L(\theta, \nu, \lambda) = \nabla_{\theta} \left(\underbrace{\mathbb{E} \left[D^{\theta}(x^{0}) \right] + \frac{\lambda}{(1-\alpha)} \mathbb{E} \left[\left(D^{\theta}(x^{0}) - \nu \right)^{+} \right]}_{V^{\theta}(x^{0}, \nu)} \right)$$
$$\nabla_{\lambda} L(\theta, \nu, \lambda) = \nu - \beta + \nabla_{\lambda} \left(\underbrace{\mathbb{E} \left[D^{\theta}(x^{0}) \right] + \frac{\lambda}{(1-\alpha)} \mathbb{E} \left[\left(D^{\theta}(x^{0}) - \nu \right)^{+} \right]}_{V^{\theta}(x^{0}, \nu)} \right)$$

 $V^{ heta}(x^0,
u)$: value function of policy heta at state $(x^0,
u)$ in augmented MDP $ar{\mathcal{M}}$

Experimental Results

M. Ghavamzadeh – Risk-averse Decision-making & Control

American Option Pricing Problem (Chow & MGH, 2014)

Problem Description

State: vector of cost and time $x_t = (c_t, t)$

Action: accept the present cost or wait (2 actions)

Cost:

$$c(x_t) = \begin{cases} c_t & \text{if price is accepted } \textbf{\textit{or}} \ t = T, \\ p_h & \text{otherwise.} \end{cases}$$

Dynamics: $x_{t+1} = (c_{t+1}, t+1)$, and

$$c_{t+1} = \begin{cases} f_u c_t & \text{w.p. } p, \\ f_d c_t & \text{w.p. } 1-p. \end{cases}$$

Aim: find a risk-sensitive control strategy that minimizes the total cost, while also avoiding large values of total cost

Results - American Option Pricing Problem

Policy Gradient

mean-CVaR optimization $\alpha = 0.95, \beta = 3$

RS-PG vs. Risk-Neutral PG: slightly higher cost - significantly lower variance

Results - American Option Pricing Problem

Actor-Critic mean-CVaR optimization $\alpha = 0.95, \beta = 3$

M. Ghavamzadeh - Risk-averse Decision-making & Control

Results - American Option Pricing Problem

Tail of $D^{\theta}(x^0)$

Tail of $D^{\theta}(x^0)$

	$\mathbb{E}[D^{\theta}(x^0)]$	$\sigma[D^{\theta}(x^0)]$	$CVaR[D^{\theta}(x^0)]$
PG	1.177	1.065	4.464
PG-CVaR	1.997	0.060	2.000
AC	1.113	0.607	3.331
AC-CVaR-SPSA	1.326	0.322	2.145
AC-CVaR	1.343	0.346	2.208

Risk-Neutral PG and AC have much heavier tail than RS-PG and RS-AC

Relevant Publications

- 1. N. Bäuerle and J. Ott. *"Markov decision processes with average-value-at-risk criteria"*. Mathematical Methods of Operations Research, 2011.
- K. Boda and J. Filar. "Time consistent dynamic risk measures". Mathematical Methods of Operations Research, 2006.
- 3. V. Borkar and R. Jain. "*Risk-constrained Markov decision processes*". IEEE Transaction on Automatic Control, 2014.
- 4. Y. Chow and MGH. "Algorithms for CVaR Optimization in MDPs". NIPS, 2014.
- 5. Y. Chow, MGH, L. Janson, and M. Pavone. "Risk-Constrained Reinforcement Learning with Percentile Risk Criteria". JMLR, 2017.
- 6. T. Morimura, M. Sugiyama, M. Kashima, H. Hachiya, and T. Tanaka. "Non-parametric return distribution approximation for reinforcement learning". ICML, 2010.
- 7. J. Ott. "A Markov Decision Model for a Surveillance Application and Risk-Sensitive Markov Decision Processes". PhD thesis, 2010.
- 8. M. Petrik and D. Subramanian. "An approximate solution method for large risk-averse Markov decision processes". UAI, 2012.
- 9. R. Rockafellar and S. Uryasev. "Conditional value-at-risk for general loss distributions". Journal of Banking and Finance, 2000.

Relevant Publications

- 10. R. Rockafellar and S. Uryasev. "Optimization of conditional value-at-risk". Journal of Risk, 2002.
- 11. A. Tamar, Y. Glassner, and S. Mannor. "Optimizing the CVaR via Sampling". AAAI, 2015.
- A. Tamar, Y. Chow, MGH, and S. Mannor. "Policy Gradient for Coherent Risk Measures". NIPS, 2015.
- 13. A. Tamar, Y. Chow, **MGH**, and S. Mannor. "Sequential Decision Making with Coherent Risk". IEEE-TAC, 2017.

Outline

Sequential Decision-Making

Risk-Sensitive Sequential Decision-Making

Mean-Variance Optimization Discounted Reward Setting Policy Evaluation (Estimating Mean and Variance) Policy Gradient Algorithms Actor-Critic Algorithms Average Reward Setting

Mean-CVaR Optimization

Expected Exponential Utility

Expected Exponential Utility

M. Ghavamzadeh – Risk-averse Decision-making & Control

Expected Exponential Loss

Objective: to find a policy μ^* such that

$$\mu^* = \operatorname*{arg\,min}_{\mu} \left(\lambda^{\mu} \stackrel{\Delta}{=} \limsup_{n \to \infty} \frac{1}{\beta T} \log \mathbb{E} \left[e^{\beta \sum_{t=0}^{T-1} \gamma^t C \left(X_t, \mu(X_t) \right)} \right] \right)$$

M. Ghavamzadeh – Risk-averse Decision-making & Control

Expected Exponential Loss

Objective: to find a policy μ^* such that

$$\mu^* = \operatorname*{arg\,min}_{\mu} \left(\lambda^{\mu} \stackrel{\Delta}{=} \limsup_{n \to \infty} \frac{1}{\beta T} \log \mathbb{E} \left[e^{\beta \sum_{t=0}^{T-1} \gamma^t C \left(X_t, \mu(X_t) \right)} \right] \right)$$

Similarity to Mean-Variance Optimization

$$\frac{1}{\beta T} \log \mathbb{E}\left[e^{\beta \sum_{t=0}^{T-1} \gamma^t C\left(X_t, \mu(X_t)\right)}\right] \approx \mathbb{E}\left[D^{\mu}(x^0)\right] + \frac{\beta}{2} \mathbf{Var}\left[D^{\mu}(x^0)\right] + O(\beta^2)$$

Expected Exponential Loss

Objective: to find a policy μ^* such that

$$\mu^* = \operatorname*{arg\,min}_{\mu} \left(\lambda^{\mu} \stackrel{\Delta}{=} \limsup_{n \to \infty} \frac{1}{\beta T} \log \mathbb{E} \left[e^{\beta \sum_{t=0}^{T-1} \gamma^t C \left(X_t, \mu(X_t) \right)} \right] \right)$$

Similarity to Mean-Variance Optimization

$$\frac{1}{\beta T} \log \mathbb{E}\left[e^{\beta \sum_{t=0}^{T-1} \gamma^t C\left(X_t, \mu(X_t)\right)}\right] \approx \mathbb{E}\left[D^{\mu}(x^0)\right] + \frac{\beta}{2} \mathbf{Var}\left[D^{\mu}(x^0)\right] + O(\beta^2)$$

How to choose the mean-variance tradeoff β ???

Expected Exponential Loss

Objective: to find a policy μ^* such that

$$\mu^* = \arg\min_{\mu} \left(\lambda^{\mu} \stackrel{\Delta}{=} \limsup_{n \to \infty} \frac{1}{T} \log \mathbb{E} \left[e^{\sum_{t=0}^{T-1} C \left(X_t, \mu(X_t) \right)} \right] \right)$$

DP Equation: is non-linear eigenvalue problem

$$\lambda^{*}V^{*}(x) = \min_{a \in \mathcal{A}} \left(e^{C(x,a)} \sum_{x' \in \mathcal{X}} P(x'|x,a) V^{*}(x') \right), \quad \forall x \in \mathcal{X} \quad \text{(deterministic)}$$

$$V^*(x) = \min_{\mu} \left(\sum_{a \in \mathcal{A}} \mu(a|x) \frac{e^{C(x,a)}}{\lambda^*} \sum_{x' \in \mathcal{X}} P(x'|x,a) V^*(x') \right), \quad \forall x \in \mathcal{X} \quad \textit{(stochastic)}$$

Value Iteration for Expected Exponential Loss

• Fix $x^0 \in \mathcal{X}$ and pick an arbitrary initial guess V_0

• At each iteration k, for all $x \in \mathcal{X}$, do

$$\widetilde{V}_{k+1}(x) = \min_{a \in \mathcal{A}} \left(e^{C(x,a)} \sum_{x' \in \mathcal{X}} P(x'|x,a) V_k(x') \right)$$

$$V_{k+1}(x) = rac{\widetilde{V}_{k+1}(x)}{\widetilde{V}_{k+1}(x^0)}$$

• converges to
$$V^*$$
 with $\lambda^* = V^*(x^0)$

Policy Iteration for Expected Exponential Loss

- Pick an arbitrary initial guess μ_0
- At each iteration k, solve the principle eigenvalue problem (policy evaluation)

$$\lambda_k V_k(x) = e^{C\left(x,\mu_k(x)\right)} \sum_{x' \in \mathcal{X}} P\left(x'|x,\mu_k(x)\right) V_k(x'), \quad \forall x \in \mathcal{X}, \text{ with } V_k(x^0) = 1$$

For all $x \in \mathcal{X}$, set (policy improvement - greedification)

$$\mu_{k+1}(x) \in \operatorname*{arg\,min}_{a \in \mathcal{A}} \left(e^{C(x,a)} \sum_{x' \in \mathcal{X}} P(x'|x,a) V_k(x') \right)$$

•
$$(V_k, \lambda_k)$$
 converges to (V^*, λ^*) with $V^*(x^0) = 1$

Q-Learning for Expected Exponential Loss

Action-value Function

$$Q^{\mu}(x,a) = \frac{e^{C(x,a)}}{\lambda^{\mu}} \sum_{x' \in \mathcal{X}} P(x'|x,a) V^{\mu}(x')$$

DP Equation

$$Q^*(x,a) = \frac{e^{C(x,a)}}{\lambda^*} \sum_{x' \in \mathcal{X}} P(x'|x,a) \min_{a' \in \mathcal{A}} Q^*(x',a')$$

Q-value Iteration

 $(\forall x \in \mathcal{X}, \ \forall a \in \mathcal{A} \quad, \quad {
m fix} \ \ x^0 \in \mathcal{X}, \ a^0 \in \mathcal{A})$

$$\widetilde{Q}_{k+1}(x,a) = e^{C(x,a)} \sum_{x' \in \mathcal{X}} P(x'|x,a) \min_{a' \in \mathcal{A}} Q_k(x',a'), \quad Q_{k+1}(x,a) = \frac{\widetilde{Q}_{k+1}(x,a)}{\widetilde{Q}_{k+1}(x^0,a^0)}$$

Q-Learning

$$Q_{k+1}(x,a) = Q_k(x,a) + \zeta(k) \left(\frac{e^{C(x,a)}}{Q_k(x^0,a^0)} \min_{a' \in \mathcal{A}} Q_k(x',a') - Q_k(x,a) \right)$$

Actor-Critic for Expected Exponential Loss

DP Eq. for Policy θ

$$V^{\theta}(x) = \sum_{a \in \mathcal{A}} \mu(a|x;\theta) \frac{e^{C(x,a)}}{\lambda^{\theta}} \sum_{x' \in \mathcal{X}} P(x'|x,a) V^{\theta}(x')$$

Markov Chain Induced by Policy θ

$$P^{\theta}(x'|x) = \frac{\sum_{a \in \mathcal{A}} \mu(a|x;\theta) e^{C(x,a)} P(x'|x,a) V^{\theta}(x')}{\lambda^{\theta} V^{\theta}(x)}$$

with stationary distributions $d^{\theta}(x)$ and $\pi^{\theta}(x,a) = d^{\theta}(x)\mu(a|x;\theta)$

Actor-Critic for Expected Exponential Loss

Gradient of the Performance Measure

$$\nabla_{\theta} \log(\lambda^{\theta}) = \frac{\nabla_{\theta} \lambda^{\theta}}{\lambda^{\theta}} = \sum_{x,a} \pi^{\theta}(x,a) \nabla_{\theta} \mu(a|x;\theta) q^{\theta}(x,a)$$

$$=\sum_{x,a\neq a^0}\pi^{\theta}(x,a)\nabla_{\theta}\mu(a|x;\theta)\left[q^{\theta}(x,a)-q^{\theta}(x^0,a^0)\right]$$

where

$$q^{\theta}(x,a) = \frac{e^{C(x,a)}}{V^{\theta}(x)\lambda^{\theta}} \sum_{x' \in \mathcal{X}} P(x'|x,a) V^{\theta}(x')$$

M. Ghavamzadeh - Risk-averse Decision-making & Control

Actor-Critic for Expected Exponential Loss

Critic Update

$$q(x_t, a_t) = q(x_t, a_t) + \zeta_2(t) \left(\frac{e^{C(x_t, a_t)}q(x_{t+1}, a_{t+1})}{q(x^0, a^0)} - q(x_t, a_t) \right)$$

Actor Update

$$\theta_{t+1} = \theta_t - \zeta_1(t) \nabla_\theta \mu(a_t | x_t; \theta) \left[q^\theta(x_t, a_t) - q^\theta(x^0, a^0) \right]$$

Two Time-Scale Stochastic Approximation

$$\zeta_1(t) = o(\zeta_2(t)) \qquad , \qquad \lim_{t \to \infty} \frac{\zeta_1(t)}{\zeta_2(t)} = 0$$

Relevant Publications

- 1. V. Borkar. "A sensitivity formula for the risk-sensitive cost and the actor-critic algorithm". Systems & Control Letters, 2001.
- 2. V. Borkar. "Q-learning for risk-sensitive control". Mathematics of Operations Research, 2002.
- V. Borkar and S. Meyn. "Risk-sensitive optimal control for Markov decision processes with monotone cost". Mathematics of Operations Research, 2002.

Thank you!!

Mohammad Ghavamzadeh

ghavamza@adobe.com OR domains of the other of the other of the other of the other ot

