
An Approximate Solution Method for Large Risk-Averse Markov
Decision Processes

Marek Petrik
IBM Research

Yorktown Heights, NY 10598
mpetrik@us.ibm.com

Dharmashankar Subramanian
IBM Research

Yorktown Heights, NY 10598
dharmash@us.ibm.com

Abstract

Stochastic domains often involve risk-averse
decision makers. While recent work has
focused on how to model risk in Markov
decision processes using risk measures, it
has not addressed the problem of solving
large risk-averse formulations. In this paper,
we propose and analyze a new method for
solving large risk-averse MDPs with hybrid
continuous-discrete state spaces and continu-
ous action spaces. The proposed method it-
eratively improves a bound on the value func-
tion using a linearity structure of the MDP.
We demonstrate the utility and properties of
the method on a portfolio optimization prob-
lem.

1 Introduction

It is common for decision makers to be risk-averse
when uncertainty is involved. For example, risk-averse
financial portfolio managers prefer an investment port-
folio that mitigates the worst-case plausible losses even
if the corresponding expected return is suboptimal.
Since the worst-case losses corresponding to solutions
that optimize the expected returns can be unaccept-
able to such decision-makers, there is a need to ex-
plicitly model risk-averse objectives. While it is com-
mon to use utility functions to capture the decision
maker’s tolerance of risk, this approach cannot capture
many empirically observed risk-averse preferences (e.g.
[13]). In addition, decision makers are often unable to
provide appropriate utility functions, and non-linear
utility functions can complicate the application of dy-
namic programming [12]. In this paper, we focus on
coherent risk measures—an alternative model of risk-
aversion.

Coherent measures of risk were developed in the field
of finance and represent an alternative model of risk-
avoidance to utility functions [2, 5]. A coherent risk

measure % is a generalization of the risk-neutral expec-
tation operator that maps a random variable X to a
real number. Informally, while the risk-neutral expec-
tation computes the average corresponding to a given
reference probability distribution, a coherent risk mea-
sure takes the worst average assessed over a suitably
defined neighborhood around the reference distribu-
tion. As such, a coherent risk measure is also inter-
pretable as a conservative way to account for ambi-
guity in the precise knowledge of the reference distri-
bution. To be a coherent risk measure, the function
% must satisfy properties that include convexity and
monotonicity, which we describe in detail later.

The properties of coherent risk measures in static set-
tings have been studied extensively and are very well
understood [5]. Their application to dynamic settings,
in which decisions are taken sequentially as additional
stochastic information arrives, is more complicated.
Dynamic risk measures have been usually studied in
stochastic programming settings which we discuss in
Section 6. Recently, dynamic risk measures have been
used to formulate risk-averse Markov decision pro-
cesses [21, 13]. Unfortunately, the methods proposed
in these papers only solve small MDPs in which both
the states and actions can enumerated. In this paper,
we extend the modeling methodology of [21] and [13]
to solve structured MDPs with continuous state and
action spaces.

To illustrate an MDP with continuous state and action
spaces, consider the problem of managing a stock port-
folio [11]. In this problem, the decision maker must
allocate the investment among a portfolio of stocks in
order to maximize the financial gain. The one-step
gain of each stock is stochastic, but depends on the
current market state; i.e. the distribution of returns is
different for volatile and calm markets. The objective
is to maximize the expected returns while minimizing
the risk of significant losses.

The main components of a Markov decision process are
the state and action spaces. For example, the state in



the portfolio management problem is represented by
the current position in the stocks and cash, and the
state of the market. While the current position may
be modeled as a continuous vector, it is common to
model the market in terms of a finite set of possible
market states [11]. The resulting state space is natu-
rally a hybrid discrete-continuous state space. The ac-
tions represent the change in the investments in every
period and are also continuous. Because of the contin-
uous aspects of the state and action sets, this problem
cannot be solved using the methods proposed in [13].
Large MDPs such as this one are typically solved using
approximate dynamic programming, a reinforcement
learning method [18]. The method that we propose is
related to approximate dynamic programming, but it
also exploits the linearity of the domain and the co-
herent risk measure.

The remainder of the paper is organized as fol-
lows. First, Section 2 introduces coherent risk mea-
sures and describes their properties in multi-stage
optimization. Section 3 then defines risk-averse hy-
brid linearly controlled MDPs. These problems have
both continuous and discrete states, continuous ac-
tions, linear transitions, and their objective is formu-
lated in terms of a coherent risk measure. In Sec-
tion 4, we propose Risk-averse Dual Dynamic Pro-
gramming (RDDP)—a method to solve hybrid risk-
averse MDPs. Our method is related to stochastic
dual dynamic programming and point-based methods
for solving POMDPs [16]. In Section 5, we evaluate the
algorithm on the portfolio management problem and
analyze the solution properties. Finally, Section 6 dis-
cusses the connections to relevant work on risk-averse
objectives in multi-stage stochastic programs.

2 Risk Measures in Markov Decision
Processes

In this section, we briefly overview the state of the
art in applying risk measures in dynamic settings. We
formally define risk-averse Markov decision processes
and other necessary notation. We omit some minor
technical assumptions needed for continuous state and
action sets; refer for example to Sections 4.3 and 4.4
of [19] for the technical details.

A Markov decision process is a tuple (S,A,W, P, c) de-
fined for time steps T = {0 . . . T} as follows. Let S be
a compact state space and A ⊆ Rm be a compact con-
tinuous action space. Let W : S ⇒ A denote a mea-
surable set-valued function (or a multimap) that maps
each state to the compact set of permissible actions and
let P : S ×A → P(S) denote the transition probabili-
ties where P(S) is the set of all probability measures on
S; P (s, a) represents the next-state probability mea-
sure for any s ∈ S and a ∈ A. Let c : S × A× S 7→ R

represent the transition cost; c(st, at, st+1) represents
the cost incurred when transiting from st to st+1 upon
taking action at. Finally, let s0 denote a deterministic
initial state. In the final time-step T + 1, we assume
that there is no action taken and the problem termi-
nates.

The focus of this paper is on finite-horizon total return
models. The solution of a finite-horizon MDP is a
policy which is composed of decision rules. A decision
rule dt : S → A at time t determines the action to be
taken in each state. A collection of decision rules, one
per each time step, is a deterministic Markov policy
π : T ×S 7→ A. The set of all policies is denoted as Π.

The objective in solving risk-neutral MDPs is to min-
imize the total cost, or return, which is defined for
π = (d1, . . . , dt) as:

ς(π) = EPπ

[∑
t∈T

c(St, dt(St), St+1)

]
, (1)

where St is a random variable that represents the state
at time t, distributed according to the probability dis-
tribution Pπ induced by the policy π. The optimal
return is ς? = minπ∈Π ς(π). It is well-known that
there exists an optimal Markov deterministic policy,
so it suffices to restrict our attention to this class of
policies.

Risk averse MDPs have been formalized recently in
[21] and [13]. Informally, given a reference probabil-
ity distribution for each transition, these formulations
modify the objective Eq. (1) by specifically penalizing
a subset of the most adverse realizations of the in-
duced cost distribution. In particular, the expectation
is replaced by a dynamically consistent risk measure %.
Risk measures that are dynamically consistent can be
applied to multistage optimization problems without
violating the dynamic programming principle [22].

Assume that the one-step random MDP costs corre-
sponding to action at taken at time step t are repre-
sented by {Zt+1}t∈T where Zt+1 ∈ Zt+1, and Zt+1 is
the space of random variables adapted to the informa-
tion filtration at time t+1, i.e. the history of the under-
lying stochastic process at time t+1. An ordinary risk
measure would assign the objective based on the total
sum of the costs %({Zt+1}t∈T ) = ρ(

∑
t∈T Zt+1). A dy-

namically consistent risk measure, on the other hand,
is defined as a composition of one-step risk mappings:

%(Z1, . . . , ZT+1) = ρ0 (Z1 + ρ1 (Z2 + . . .+ ρT (ZT+1))) .

The one-step conditional risk mappings ρt : Zt+1 → Zt
must satisfy the following properties:

(A1) Convexity: ρt+1 (α · Z + (1− α) · Z ′) ≤ α ·
ρt+1 (Z) + (1 − α) · ρt+1 (Z ′) for all Z,Z ′ ∈ Zt+1

and α ∈ [0, 1].



(A2) Monotonicity: If Z � Z ′ then ρt+1 (Z) �
ρt+1 (Z ′).

(A3) Translation equivariance: If a ∈ Zt, then
ρt+1 (Z + a) = ρt+1 (Z) + a.

(A4) Positive homogeneity: If t > 0, then ρt+1 (t · Z) =
t · ρt+1 (Z).

Note that the value ρt (Z) is a random variable in Zt
and the inequalities between random variables are as-
sumed to hold almost surely.

A general dynamically consistent risk measure may be
cumbersome to use due to two reasons. The parame-
ters that specify the particular choice of the mapping
ρt could in general depend on the entire history until
time t, and further, the argument on which the map-
ping applies, namely, Zt+1 could in general depend on
the entire history until time t + 1, therefore requiring
non-Markov optimal policies. We, therefore, further
restrict our treatment to Markov risk measures [21].

Markov risk measures require that the parameters that
specify the particular choice of the conditional risk
mappings ρt are independent of the history, given the
current state, and further that the mapping operation
is also independent of the history, given the current
state. This is a natural choice for MDPs because the
source of uncertainty is the stochastic transition cor-
responding to any given state-action pair (st, at), and
the reference probability distribution for this stochas-
tic transition is independent of the history, given the
current state. Intuitively, an input to a conditional
risk mapping of a Markov risk measure ρt is the ran-
dom variable of the costs incurred during a transition
from a state st ∈ S and the output of the risk mapping
is a single number for each st.

The simplest example of a conditional risk mapping is
the expectation in which case the objective becomes
risk-neutral. The risk neutral objective would be:

%(Z1, . . . , ZT+1) = E [Z1 + E [. . .+ E [ZT+1]]] .

A more general risk measure that allows a convenient
specification of the appropriate level of risk tolerance
is the Average Value at Risk (AV@Rα) parameterized
at a chosen level α > 0 which is defined as [5]:

AV@Rα(Z) = max
q∈Qα

Eq [Z] , (2)

Qα =
{
q : q(ω) ≤ p(ω)

α
, 0 ≤ q(ω) ≤ 1, ω ∈ Ω

}
.

Here, Ω is the finite sample space and p is a reference
distribution which, in our case, is the distribution in-
duced by the transition probabilities. It is easy to see
that AV@R1(Z) = E [Z] and AV@R0(Z) is the worst-
case (or robust) realization. In plain words, average
value at risk is the conditional expectation beyond the
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Figure 1: Comparison of two distributions with iden-
tical expectations and different AV@R0.1 values. The
filled-in regions illustrate the quantiles, while the ver-
tical lines indicate the expectations and values at risk.

α quantile. Average value at risk, therefore, will as-
sign a higher overall cost to a scenario with heavier
tails even if the expected value stays the same. Fig. 1
illustrates how a AV@R is computed in comparison
with a plain expectation.

In the interest of clarity, we concentrate in the remain-
der of the paper on conditional risk mappings that are
a convex combination of average value at risk and ex-
pectation and defined as follows:

ρt (X) = (1− λ)Ep [X] + λAV@Rα(X) (3)

We will use the fact that the set Qα is polyhedral
to derive the algorithms. However, it is well known
that any conditional risk mapping that satisfies the
assumptions (A1)-(A4) can be represented as:

ρt (Z) = sup
Q∈Q(st,at)

EQ [Z]

where Q(st, at) ⊆ P(S) is a closed bounded convex set
of probability measures on S. In addition, when the
conditional risk mapping satisfies the comonotonicity
assumption [5], the set Q is polyhedral. The proposed
algorithm can be, therefore, applied to any dynami-
cally consistent risk measure in which the conditional
risk mappings satisfy the comonotonicity assumption.

To derive RDDP, we need yet another representation
of AV@R as a minimization linear program. Because
the set Qα is a polytope, the optimization in Eq. (3)
can be written as a linear program. The dual of this
linear program yields the following representation:

ρt (Z) = (1−λ)Ep [Z]+λ

 min
µ,ξ

µ+
1

α
pTξ

s.t. ξ + 1µ ≥ Z
ξ ≥ 0

 (4)

The duality we used above for finite spaces can be
generalized to more general sample spaces under rea-
sonable technical assumptions [20]. The optimal value
of µ corresponds to the quantile of Z at level α.



One attractive property of dynamically consistent risk
measures is that they not only model risk aversion,
but also preserve most of the structure of MDPs that
makes them easy to solve. In particular, there ex-
ists an optimal deterministic Markov policy in risk-
averse MDPs with Markov risk measures [21], under
some mild additional technical assumptions. The ad-
ditional technical conditions that are needed are the
continuity of P (st, ·) and lower semicontinuity of W
and c(st, at, st+1) with respect to at.

It is also possible to define the value function in risk-
averse MDPs with Markov risk measures. The finite-
horizon value function vt : S → R is defined identically
as for the risk neutral case, except the expectations are
replaced by a risk measure; that is for some policy π
the value function represents the return obtained when
starting in a given state. The action-value function
qπ : T × S × A 7→ R for a policy π, also known as
Q-function [1, 18], represents the value function in a
state s after taking an action a. The optimal value
function is a value function that corresponds to an
optimal policy.

The optimal value function in risk-averse MDPs must
satisfy the Bellman optimality conditions, which are
stated in the following theorem.

Theorem 1 ([21]). A finite-horizon value function
v?(t) is optimal if and only if it satisfies for all s ∈ S
and t ∈ T the following equality:

v?t (st) = min
a∈A

q?t (st, a)

q?t (st, a) = ρt
(
ct(st, a, St+1) + v?t+1(St+1)

)
.

Here, St+1 is a random variable representing the state
at t + 1 distributed according to the transition proba-
bility P (st, a) and vT+1(s) = 0.

We will use RDDP to compute an approximately opti-
mal value function for a risk averse MDP. The actual
solution is the greedy policy with respect to this value
function. A policy π is greedy with respect to a value
function q when it is defined for any st ∈ S at time t
as:

π(st) ∈ arg min
a∈A

qt(st, a) .

Using the greedy policy is the most common method
of computing a policy from a value function.

This section introduced a very general model for risk-
averse Markov decision processes. In the remainder
of the paper, Section 3 defines a linear structure of
the state and action spaces that is common in some
domains, and Section 4 derives RDDP that exploits
this structure to efficiently approximate the optimal
value function.

3 Hybrid Linearly Controlled
Problems

Standard MDP solution methods, such as value or pol-
icy iteration, do not scale easily to large or continu-
ous Markov decision processes. Unfortunately, many
practical applications involve MDPs with continuously
many states and actions. In this section, we describe
a specific class of risk averse MDPs with linear transi-
tions and costs that can be solved more efficiently.

Informally, a hybrid linearly controlled problem is an
MDP with a state set that has both a discrete and
a continuous component. The actions are continuous.
The transition probabilities are independent of contin-
uous states and the transitions for continuous states
can be described linearly in terms of the continuous
states and actions. The following definition describes
the problem formally.

Definition 1. A hybrid linearly controlled problem is
an MDP (S,A,W, P, c) such that:

• States S = D×X where X ⊆ Rn is a closed poly-
hedral set of continuous states and D is a (small)
finite set of discrete states.
• Actions A ⊆ Rm is a closed convex polyhedral set

for some m.
• Admissible actions for (d, x) ∈ S are restricted by

the set-valued map W : S ⇒ A defined as:

W (d, x) = {a ∈ A : Ada = bd−Xdx, ld ≤ a ≤ ud}.

• Transitions P : S ×A → P(S) are defined as fol-
lows. Assume a finite sample space Ωd for each
d ∈ D with a given reference probability distribu-
tion PD. Ωd can be seen as a d−specific, one-step
finite sample space corresponding to the evolution
of an underlying exogenous, stationary, stochas-
tic process. Further, assume the following random
variables are specified: D : Ωd → D, Tx : Ωd →
Rn×n, Ta : Ωd → Rn×m, U : Ωd → Rn. The map-
ping D captures the action-independent transition
from one discrete state to another in the set D.
Now define a random variable:

X = Txx+ Taa+ U .

The mapping X captures the transition from one
continuous state to another in the set X upon
taking action a. Both the discrete and continu-
ous state transitions are induced by PD. In other
words, P ((d, x), a) is the probability distribution
induced by PD over all (random) pairs (D,X).
• Cost function c : S × A × S → R is a linear

function in terms of states and actions:

c(s, a, s′) = c((d, x), a, (d′, x′))

= cTaa+ cTxx+ cTnx
′.



For sake of simplicity, we assume that there exists an
admissible action for every state (W is non-empty).
This is equivalent to the complete recourse assump-
tion, which is common in stochastic programming.

Dynamic Portfolio Management

We now use a portfolio optimization problem—
described in [11]—to illustrate the above model of a
hybrid linearly controlled system; later we use this
model to experimentally evaluate RDDP. The model
assumes three risky assets, cash, and a market state.
The one-step returns of the risky assets are denoted by
a vector rt = (r1

t , . . . , r
3
t ) for any time t. In addition,

there is assumed to be a risk-free asset—cash—with
a constant and known return rf . All returns are in-
flation adjusted. The monetary holdings of the assets
at time t are denoted by a vector xt = (x1

t , . . . , x
3
t )

and the risk-free cash position is ct. The decision
maker decides on trades that are bought (positive) and
sold (negative) on a daily basis, which are denoted by
at = (a1

t , . . . , a
3
t ). The transaction costs κ(at) for a

trade are proportional and defined as:

κ(at) =

3∑
i=1

δ+
i

[
ait
]
+
− δ−i

[
ait
]
−

for some non-negative δ+
i and δ−i . The asset holdings

xt and cash position ct evolve according to:

xit+1 = rit+1 · (xit + ait) ∀i
ct+1 = rf · (ct − 1Tat − κ(at)) .

The return rates evolve with the state of the market,
as we describe below. The goal of the investor is to
maximize a function of the total terminal wealth; it is
necessary to not only maximize the expected wealth
but also account for the associated risk.

The returns for risky assets evolve according to an ex-
ogenous stochastic process that is independent of the
investor’s position. In particular, the market state is
a one-dimensional continuous real variable zt which
partially predicts the returns. The market state and
the returns evolve linearly with a jointly normally dis-
tributed noise as:(

ln rt+1

zt+1

)
=

(
ar + brzt
az + bzzt

)
+

(
et+1

vt+1

)
, (5)

where the stochastic variables (et+1, vt+1) are dis-
tributed according to a multivariate normal with zero
mean and variance Σ for all times. The values
ar, br, az, bz, σ were estimated from NYSE data for
1927-1996 [11]. Note that rt+1 depends only on zt
and is independent of rt. We describe the values of
these variables in more detail in Appendix A.

The one-dimensional market state variable and the
market rates transitions are discretized [11, 3]. The
market state variable is discretized uniformly to 19
points. The distributions for market rates are then
estimated for the discrete grid using Gaussian quadra-
ture methods with 3 points per each dimension (27 to-
tal) to precisely match the mean and the variance [10].

The dynamic portfolio optimization problem can then
be naturally modeled as a hybrid linearly controlled
problem. The state space S = (D,X ) is factored into
discrete states D = {1 . . . 19} that represent the mar-
ket state z and continuous states X ⊂ R4 that repre-
sent the asset investment and the monetary position.
The first three elements of x ∈ X represent the asset
positions and the last element represents the cash.

The set of actions A represents the feasible trades
at ∈ R3 for each of the three assets. The cash posi-
tion is adjusted accordingly, depending on the balance
of the trades and transaction costs. The actions are
constrained by W (s) in order for the asset and cash
positions to remain non-negative as follows:

W (d, x) =

{
a :

x(4)− 1Ta− κ(a) ≥ 0
x(i) + a(i) ≥ 0 i = 1 . . . 3

}
.

The costs represent the total change in wealth, which
is a function of the capital gains and the transaction
costs. Formally, for any (d, x) ∈ S, a ∈ A, (d′, x′) ∈ S
the cost is the reduction in total wealth:

c((d, x), a, (d′, x′)) = 1T(x− x′) .

The evolution of the dynamic portfolio optimization is
depicted in Fig. 2. The round nodes indicate states,
while the square nodes indicate intermediate state-
action positions. The solid arrows represent the op-
timization decisions to rebalance the portfolio and the
dashed arrows represent stochastic transitions that de-
termine the next market state and the returns. The
figure also indicates at which point the risk mappings
are applied.

4 Risk Averse Dual Dynamic
Programming

In this section, we describe a new approximate al-
gorithm to solve hybrid linearly controlled problems.
This algorithm is loosely based on value iteration but
uses the polyhedral structure of the MDP to simulta-
neously update value functions over a range of states.
The method is approximate because it uses simulation
to identify the relevant states.

The Bellman optimality equations, as described in
Theorem 1, can be easily adapted for the hybrid lin-
early controlled problem as follows.
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Figure 2: Transitions in the portfolio optimization problem.

Corollary 1 (Bellman optimality condition). A
finite-horizon value function v?(t) is optimal if and
only if it satisfies for all s ∈ S and t ∈ T the following
equality:

v?t (st) = min
a∈W (st)

q?t (st, a) (6)

q?t (st, a) = ρt
(
c(st, a, St+1) + v?t+1(St+1)

)
(7)

Here, St+1 is a random variable representing the state
at time t + 1 distributed according to the transition
probability P (st, a) and vT+1(sT+1) = 0.

Assume a state s = (d, x) and consider D and X to
be random variables representing the next state as in
Definition 1. Then Eq. (7), which is in particular a
composition of a risk measure with an affine map, can
be written as:

q?t (s, a) = q?t ((d, x), a)

= ρt
(
cTaa+ cTxx+ cTnX + vt+1(D,X)

)
= ρt

(
cTaa+ cTxx+ cTnTxx+ cTnTaa+ cTnU+

+ vt+1(D,Txx+ Taa+ U)
)

= ρt (Zt+1(d, x, a)) ,

for the finite vector-valued (random) variable
Zt+1(d, x, a) = cTaa + cTxx + cTnTxx + cTnTaa + cTnU +
vt+1(D,Txx+ Taa+ U), which has dimension |Ωd|.
To derive RDDP, we now show that the Bellman opti-
mality conditions for linearly controlled hybrid prob-
lems can be formulated as a linear program. The op-
timization variables in the problem correspond to ac-
tions and the risk measure. The constraints are a func-
tion of the state. Using Eq. (4), it can be readily shown
that Eq. (7) a linear program. This representation can
then be coupled with the optimization over the action
a in Eq. (6) to get the following linear program repre-
sentation of the Bellman optimality conditions:

v?t (d, x) =

min
a,µ,ξ

(1− λ)pTdZt+1(d, x, a) + λ
(
µ+

pTdξ

α

)
s.t. Ada = bd −Bdx

ld ≤ a ≤ ud
ξ + 1µ ≥ Zt+1(d, x, a)

ξ ≥ 0


, (8)

where pd is the measure PD for d ∈ D. The notation
above assumes that random variables are represented

as vectors as the following equality illustrates:

pTdZt+1(d, x, a) =
∑
ω∈Ωd

pd(ω)Zt+1(d, x, a, ω) ,

where: Ωd is the finite sample space and
Zt+1(d, x, a, ω) = cTaa+ cTxx+ cTnTx(ω)x+ cTnTa(ω)a+
cTnU(ω) + v?t+1(D(ω), Tx(ω)x+ Ta(ω)a+ U(ω)).

Now, using Eq. (8), it is easy to show the following
proposition that describes the structure of value func-
tions.

Proposition 1. Assuming that W (s) is non-empty
for all s ∈ S, the optimal value function is piecewise
affine convex function of x for each d ∈ D:

v?t (d, x) = max
i∈It(d)

(qTx,ix+ qc,i) , (9)

where It(d) is a finite non-empty set. In addition, the
state-action value function q?t (s, a) is piecewise affine
convex in a for any s ∈ S.

Proof. We prove the proposition by a backward in-
duction on t. The proposition holds trivially for vT+1
(since vT+1 = 0). Consider t = T . The linear program
in Eq. (8) may be simplified as,

v?T (d, x) =

min
a,µ,ξ,z

λ · µ+
∑
ω∈Ωd

pd(ω)
(
(1− λ) · z(ω)+

+
λ

α
· ξ(ω)

)
s.t. δ|1 : Ada = bd −Bdx

δ|2 : z(ω)− (cTa + cTnTa(ω))a =

= (cTx + cTnTx(ω))x+ cTnU(ω)

δ|3 : ld ≤ a, δ|4 : a ≤ ud
ξ(ω) + µ− z(ω) ≥ 0, ξ ≥ 0 .



(10)

Due to the assumption of a non-empty and bounded
W (s) for all s ∈ S, the set of extreme points cor-
responding to the dual polytope of the above linear
program is a non-empty, finite set that is independent
of x, and depends only on d. Let It(d) denote this
finite set. By duality, we have

v?T (d, x) = max
i∈It(d)

(
δi|T1 (bd −Bdx)

+
∑
ω∈Ωd

δi|2(ω)
(
(cTx + cTnTx(ω))x+ cTnU(ω)

)
+ δi|T3 ld + δi|T4ud

) .



The above expression is indeed a piecewise affine con-
vex function of x, where we may readily identify qx,i
and qc,i by algebraically grouping terms that are linear
in x and the additive constant, for each i. Thus the
proposition is true for t = T . Assuming that it is true
for any t+ 1 ≤ T , we can show next that it is true for
t as well.

Now, for any t < T , the mathematical optimization in
Eq. (8) with the representation of v?t+1 as in Eq. (9) is
the following linear program.

v?t (d, x) =

min
a, µ,
ξ, z, y

λ · µ+
∑
ω∈Ωd

pd(ω)
(
(1− λ) · z(ω)+

+
λ

α
· ξ(ω)

)
s.t. δ|1 : Ada = bd −Bdx

δ|2 : z(ω)− (cTa + cTnTa(ω))a =

= (cTx + cTnTx(ω))x+ cTnU(ω) + y(ω)

δ|3 : ld ≤ a, δ|4 : a ≤ ud
δ|5 : y(ω)− qTx,jTa(ω)a ≥ qTx,j ·
·
(
Tx(ω)x+ U(ω)

)
+ qc,j

∀j ∈ It+1(D(ω))

ξ(ω) + µ− z(ω) ≥ 0, ξ ≥ 0 .



(11)

The constraint family indexed by δ|5 is a consequence
of the induction hypothesis, where y(ω) is an auxiliary
variable that captures v?t+1(D(ω), X(ω)). A similar
argument using duality for Eq. (11) gives:

v?t (d, x) = max
i∈It(d)

(
δi|T1 (bd −Bdx)+

+
∑
ω∈Ωd

δi|2(ω)
(
(cTx + cTnTx(ω))x+ cTnU(ω)

)
+

+ δi|T3 ld + δi|T4ud+

+
∑
ω∈Ωd,

j∈It+1(D(ω))

δi|5(ω, j) ·
(
qTx,j(Tx(ω)x+ U(ω))+

+ qc,j
))
,

(12)

thereby giving a piecewise affine convex function of x
for v?t (d, x).

Note that the convex representation in Eq. (9) has an
exponentially large number of pieces in general, and is
not usable in its exact form. The algorithm we pro-
pose, RDDP, takes advantage of the piecewise linear
representation of the optimal value function to approx-
imate it efficiently. This method is related to value
iteration; it iteratively grows an approximation of the
large set It(d) by adding one element in each step.
Fortunately, it is not necessary to compute the opti-
mal value function to get a good policy—a good value
function will suffice. We propose an algorithm that
approximates the value function from below by using

only a subset of It(d). The algorithm is summarized
in Algorithm 1.

In particular, we identify the relevant linear pieces
of each value function by successively refining lower
bounds on the value function. Because the represen-
tation as shown in Eq. (9) is convex, a subgradient
inequality of the function may be readily derived at
any (d, x) which will serve as a lower bound. The fol-
lowing proposition summarizes this property.

Proposition 2. Consider v?t (d, x) described as in
Proposition 1, and let x̂ ∈ X be any fixed continuous
component of the hybrid state. For any chosen value
d, let δî be the corresponding optimal dual solution of

Eq. (11), where î ∈ It(d), and f?(x̂) be the correspond-
ing optimal objective value. Then: eTxx+ ec ≤ v?t (d, x)
where:

eTx = −δ?
î
|T1Xd +

∑
ω∈Ωd

(
δ?
î
|2(ω)cTnTx(ω)

)
+

∑
ω∈Ωd,

j∈It+1(D(ω))

(
δ?
î
|5(ω, j)qTx,jTx(ω)

)
ec = f?(x̂) .

In addition, with such lower bounds added in Algo-
rithm 1, we are guaranteed to converge to the optimal
value function.

Proof. The lower bounding inequality for v?t (d, x) fol-
lows directly from the subgradient of the convex value
function as established in Proposition 1. It is a direct
consequence of Eq. (12), since î ∈ It(d). In particular,
starting with an empty set Jt(d) as our approxima-
tion for It(d), at each time step we iteratively improve
Jt(d) by adding an additional element î. The con-
vergence to the optimal solution follows because the
scenario tree that represents all T -step realizations of
the uncertainty is finite. Then, using backward induc-
tion, finite termination of the algorithm can be readily
shown.

5 Empirical Results

In this section, we present numerical results of RDDP
on the portfolio optimization domain described in Sec-
tion 3. The results not only demonstrate the utility
of RDDP in modeling and solving risk-averse MDPs
but also illustrate the properties of risk-averse behav-
ior in portfolio optimization. Please note that it is
impractical to solve the portfolio optimization prob-
lem using discretization since the state-actions space
is 8-dimensional. Even with a moderate discretization
with 8 points per each dimension, computing the value
of the risk measure Eq. (2) for all states and actions



Algorithm 1: Risk-sensitive Dual Dynamic Program-
ming (RDDP)

Data: MDP Model
Result: Lower bound on value function: v?t
Jt(d)← {} ∀d ∈ D ∀t ;
while iterations remain do

// Forward pass: sample states

s0 = (d0, x0)← initial state ;
for t ∈ 0 . . . T do

at ← Solve LP Eq. (11) with Jt+1(d) ;
ωt+1 ← sample from Ωdt .
xt+1 ← Tx(ωt+1)xt + Ta(ωt+1)at + U(ωt+1);
dt+1 ← D(ωt+1);

// Backward pass: compute lower bounds

for t ∈ T . . . 1 do
for d′ ∈ D do

Solve LP Eq. (11) for (d′, xt) ;

Compute î, qx,̂i = ex, qc,̂i = ec from

Proposition 2 ;

Jt(d′)← Jt(d′) ∪ {̂i} ;

Update lower bound for initial state. Solve LP
Eq. (11) for (d0, x0) ;

involves a linear program with 88 ∗ 19 ∗ 27 ≈ 9 · 109

variables; here 19 and 27 represent the number of tran-
sitions.

We start by evaluating RDDP convergence in a risk-
neutral setting; it is easy to evaluate the quality of
such a policy by simulation. The policy computed
by RDDP for this objective is simple: it always in-
vests the full wealth in the small-cap stock which has
the highest expected value. As Proposition 2 shows,
RDDP updates a guaranteed lower bound on the op-
timal value function in each iteration. Because this is
a minimization problem, a lower bound on the value
function corresponds to an upper bound on the to-
tal wealth. Fig. 3 shows the convergence of the lower
bound for the consecutive iterations of RDDP. The fig-
ure compares the upper bound with simulated returns
for 5 time steps and 3000 runs for each policy. The
results show that the bound converges close to the op-
timal solution in 10 iterations. Each iteration involves
solving 100 linear programs in Eq. (11).

The opposite of the risk-neutral formulation is the
worst-case—or robust—formulation with λ = 1 and
α = 0. The robust formulation essentially corresponds
to replacing the expectation over the outcomes by the
worst case value. The optimal solution in this set-
ting is to invest the entire wealth in cash, which has
a constant return and RDDP converges to it in a sin-
gle iteration. While the worst-case solution is easy to
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Figure 3: Simulated returns and an upper bound com-
puted by RDDP. The confidence bounds correspond to
2 standard deviations.

compute, it is hard to evaluate its value by simulation.
This is because one needs to sample all realizations to
find the worst one.

Finally, we evaluate a mildly risk-averse solution with
λ = 0.2 and α = 0.7. Given this objective, the decision
maker optimizes the expected return with a weight
of 80% and the 70% tail expectation with a weight
of 20%. The solution computed for this risk-averse
objective invests in a mix of cash and the small-cap
stock that depends on the market state. There is no
investment in large or medium-cap stock.

Fig. 4 compares the investment value for risk neutral
and averse solutions. The investment for the risk-
averse solution is 90% in cash and 10% in small-cap
stop; the fractions are reversed for the risk-neutral
solution. The value of the risk-neutral solution in-
creases with market state because the expected return
of stocks increases with higher volatility. The value
of the risk averse solution increases for calm market
states (1-5) but decreases with higher market volatil-
ity as the portfolio mix becomes more biased towards
cash. The value function the decreases sharply when
the volatility is high because of trading fees charged
when rebalancing towards cash.

The risk-averse solution achieves an average return of
about 0.6%, which is much lower than 5.4% for the risk
neutral solution. However, the variance of the risk-
averse solution is close to 0 and the return is about 5
times greater than the return of pure cash investment
0.1%. RDDP also efficiently optimizes the dynamically
consistent risk measure reducing the lower bound by a
factor of 26.9 in the first three iterations.

It is interesting to compare the RDDP solution to ex-
isting methods for solving portfolio optimization prob-
lems. The risk aversion in previous work was mod-
eled by a concave utility function and the solutions
were heuristics based on frictionless models [11, 3].
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Figure 4: Value of investment as a function of the mar-
ket state (negated value function). Market volatility
increases with increasing state.

The utility-based risk aversion, coupled with the as-
sumption of no transaction fees, led to diversification
of the portfolio between middle and large capitaliza-
tion stocks. On the other hand, the RDDP solution
with the AV@R risk measure prefers diversification
into cash to other stocks. Future work will need to
address whether this difference is due to different risk
objectives or different approximation techniques used
to compute the solutions.

6 Related Work and Discussion

In this section, we discuss connections between RDDP
and related work in both stochastic programming and
artificial intelligence communities. Large or contin-
uous risk-neutral MDPs, such as the hybrid linearly
controlled problems, are often solved by approximate
dynamic programming or reinforcement learning. Ap-
proximate dynamic programming overcomes the large
size of these problems by restricting value functions to
a small linear space [18]. We are not aware, however,
of any approximate dynamic programming methods
that optimize risk-averse objectives. RDDP is similar
to approximate dynamic programming, except the fea-
tures are constructed automatically using the special
structure of the problem. As a result, RDDP is easier
to apply to compatible problems, but is less general
because it cannot be applied to non-linear problems.

RDDP is also related to stochastic dual dynamic pro-
gramming (SDDP). SDDP is an approximate method
for solving large multistage linear programs with cer-
tain independence assumptions [14, 15, 22].Some of
these methods have been extended to risk averse ob-
jectives [9, 6, 17, 7]; although they typically assume
a different independence structure from the proposed
linearly controlled problems.

In a parallel stream of work on risk-averse optimiza-
tion, models with polyhedral risk measures have been
studied [4, 8]. Unlike the Markov risk measures, poly-
hedral risk measures are not dynamically consistent,

Large-cap Mid-cap Small-cap Cash
Mean (ar , az) 0.0053 0.0067 0.0072 0.0000
Coefficient (br ,bz) 0.0028 0.0049 0.0062 0.9700

Table 1: Regression coefficients of rate means

Large-cap Mid-cap Small-cap Cash
Large-cap 0.002894 0.003532 0.003910 -0.000115
Mid-cap 0.004886 0.005712 -0.000144
Small-cap 0.007259 -0.000163
Dividend Yield 0.052900

Table 2: Noise covariance Σev

but must satisfy other properties that make the re-
sulting problems easy to solve.

7 Conclusion

The paper describes RDDP, a new algorithm for solv-
ing Markov decision processes with risk averse objec-
tives and continuous states and actions. We model the
risk-aversion using dynamically consistent convex risk
measures, which is an established approach in stochas-
tic finance. Our experimental results on a portfolio op-
timization problem indicate that RDDP can be con-
verge quickly to a close-to-optimal solution for both
risk-averse and risk-neutral objectives. Our risk averse
solutions also provide new insights into the properties
of risk-aversion in the portfolio optimization setting.

While the focus of this paper is on a financial appli-
cation, there are numerous other domains that exhibit
similar linear properties, such as stochastic inventory
management, or hydrothermal energy management.
The portfolio optimization problem represents a good
benchmark, because it is relatively simple to describe
and fit to real data, and a similar structure can be
found in many domains that involve optimal utiliza-
tion of finite resources.

One significant weakness of RDDP is that the con-
vergence criterion is not well defined and risk-averse
objectives may be hard to evaluate by simulation. It
is not hard, however, to remedy both these issues. Us-
ing the convexity of the optimal value function and
the lower bound computed by RDDP, it is also possi-
ble to compute an upper bound on the value function
based on Jensen’s inequality. The difference between
the upper and lower bounds then provides a reliable
stopping criterion and an empirical value of a policy.

A Numerical Values

The values ar, br, az, bz, σ were estimated from NYSE
data for 1927-1996 [11]. Table 1 summarizes the re-
gression coefficients ar, br, az, bz and Table 2 summa-
rizes the covariance of the noise σ. The risk-free return
on cash is rf = 1.00042. The initial market state is
z0 = 0.
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