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Abstract

Approximate dynamic programming is a pop-
ular method for solving large Markov de-
cision processes. This paper describes a
new class of approximate dynamic program-
ming (ADP) methods—distributionally ro-
bust ADP—that address the curse of dimen-
sionality by minimizing a pessimistic bound
on the policy loss. This approach turns ADP
into an optimization problem, for which we
derive new mathematical program formula-
tions and analyze its properties. DRADP
improves on the theoretical guarantees of ex-
isting ADP methods—it guarantees conver-
gence and L1 norm-based error bounds. The
empirical evaluation of DRADP shows that
the theoretical guarantees translate well into
good performance on benchmark problems.

1. Introduction

Large Markov decision processes (MDPs) are common
in reinforcement learning and operations research and
are often solved by approximate dynamic program-
ming (ADP). Many ADP algorithms have been de-
veloped and studied, often with impressive empirical
performance. However, because many ADP methods
must be carefully tuned to work well and offer insuffi-
cient theoretical guarantees, it is important to develop
new methods that have both good theoretical guaran-
tees and empirical performance.

Approximate linear programming (ALP)—an ADP
method—has been developed with the goal of
achieving convergence and good theoretical guaran-
tees (de Farias & van Roy, 2003). Approximate bilin-
ear programming (ABP) improves on the theoretical
properties of ALP at the cost of additional computa-
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tional complexity (Petrik & Zilberstein, 2009; 2011).
Both ALP and ABP provide guarantees that rely on
conservative error bounds in terms of the L∞ norm
and often under-perform in practice (Petrik & Zilber-
stein, 2009). It is, therefore, desirable to develop ADP
methods that offer both tighter bounds and better em-
pirical performance.

In this paper, we propose and analyze distribu-
tionally robust approximate dynamic programming
(DRADP)—a new approximate dynamic program-
ming method. DRADP improves on approximate lin-
ear and bilinear programming both in terms of the-
oretical properties and empirical performance. This
method builds on approximate linear and bilinear pro-
gramming but achieves better solution quality by ex-
plicitly optimizing tighter, less conservative, bounds
stated in terms of a weighted L1 norm. In particular,
DRADP computes a good solution for a given initial
distribution instead of attempting to find a solution
that is good for all initial distributions.

The objective in ADP is to compute a policy π with the
maximal return ρ(π). Maximizing the return also min-
imizes the loss with respect to the optimal policy π?—
known as the policy loss and defined as ρ(π?) − ρ(π).
There are two main challenges in computing a good
policy for a large MDP. First, it is necessary to ef-
ficiently evaluate its return; evaluation using simula-
tion is time consuming and often impractical. Second,
the return of a parameterized policy may be a func-
tion that is hard to optimize. DRADP addressed both
these issues by maximizing a simple lower bound ρ̃(π)
on the return using ideas from robust optimization.
This lower bound is easy to optimize and can be com-
puted from a small sample of the domain, eliminating
the need for extensive simulation.

Maximizing a lower bound on the return corresponds
to minimizing an upper bound ρ(π?) − ρ̃(π) on the
policy loss. The main reason to minimize an upper
bound—as opposed to a lower bound—is that the ap-
proximation error can be bounded by the difference
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ρ(π?) − ρ̃(π?) for the optimal policy only, instead of
the difference for the set of all policies, as we show
formally in Section 4.

The lower bound on the return in DRADP is based
on an approximation of the state occupancy distribu-
tions or frequencies (Puterman, 2005). The state oc-
cupancy frequency represents the fraction of time that
is spent in the state and is in some sense the dual of a
value function. Occupancy frequencies have been used,
for example, to solve factored MDPs (Dolgov & Dur-
fee, 2006) and in dual dynamic programming (Wang,
2007; Wang et al., 2008) (The term “dual dynamic pro-
gramming” also refers to unrelated linear stochastic
programming methods). These methods can improve
the empirical performance, but proving bounds on the
policy loss has proved challenging. We take a differ-
ent approach to prove tight bounds on the policy loss.
While the existing methods approximate the state oc-
cupancy frequencies by a subset, we approximate it by
a superset.

We call the DRADP approach distributionally robust
because it uses the robust optimization methodology
to represent and simplify the set of occupancy distri-
butions (Delage & Ye, 2010). Robust optimization is a
recently revived approach for modeling uncertainty in
optimization problems (Ben-Tal et al., 2009). It does
not attempt to model the uncertainty precisely, but in-
stead computes solutions that are immunized against
its effects. In distributionally robust optimization, the
uncertainty is in probability distributions. DRADP
introduces the uncertainty in state occupancy frequen-
cies in order to make very large MDPs tractable and
uses the robust optimization approach to compute so-
lutions that are immune to this uncertainty.

The remainder of the paper is organized as follows.
First, in Section 2, we define the basic framework in-
cluding MDPs and value functions. Then, Section 3
introduces the general DRADP method in terms of
generic optimization problems. Section 4 analyzes ap-
proximation errors involved in DRADP and shows that
standard concentration coefficient assumptions on the
MDP (Munos, 2007) can be used to derive tighter
bounds. To leverage existing mathematical program-
ming methods, we show that DRADP can be formu-
lated in terms of standard mathematical optimization
models in Section 5. Finally, Section 6 presents ex-
perimental results on standard benchmark problems.
Due to space constraints we omit the proofs in this
version; please see the extended version for the full
proofs (Petrik, 2012).

We consider the offline—or batch—setting in this pa-
per, in which all samples are generated in advance of

computing the value function. This setting is iden-
tical to that of LSPI (Lagoudakis & Parr, 2003) and
ALP (de Farias & van Roy, 2003).

2. Framework and Notation

In this section, we define the basic concepts required
for solving Markov decision processes: value functions,
and occupancy frequencies. We use the following gen-
eral notation throughout the paper. The symbols 0
and 1 denote vectors of all zeros or ones of appropri-
ate dimensions respectively; the symbol I denotes an
identity matrix of an appropriate dimension. The op-
erator [·]+ denotes an element-wise non-negative part
of a vector. We will often use linear algebra and
expectation notations interchangeably; for example:
Eu [X] = uTx, where x is a vector of the values of
the random variable X. We also use RX to denote the
set of all functions from a finite set X to R; note that
RX is trivially a vector space.

A Markov Decision Process is a tuple (S,A, P, r, α).
Here, S is a finite set of states, A is a finite set of
actions, P : S×A×S 7→ [0, 1] is the transition function
(P (s, a, s′) is the probability of transiting to state s′

from state s given action a), and r : S × A 7→ R
is a reward function. The initial distribution is: α :
S 7→ [0, 1], such that

∑
s∈S α(s) = 1. The set of all

state-action pairs is W = S × A. For the sake of
simplicity, we assume that all actions can be taken in
all states. To avoid technicalities that detract from
the main ideas of the paper, we assume finite state
and action sets but the results apply with additional
compactness assumptions to infinite sets. We will use
S and W to denote random variables with values in S
and W.

The solution of an MDP is a stationary determinis-
tic policy π : S → A, which determines the action
to take in any state; the set of all deterministic poli-
cies is denoted by ΠD. A stationary randomized—or
stochastic—policy π : S ×A → [0, 1] assigns the prob-
ability to all actions for every state; the set of all ran-
domized policies is denoted by ΠR. Clearly ΠD ⊆ ΠR

holds by mapping the chosen action to the appropriate
distribution. A randomized policy can be thought of
as a vector on W that assigns the appropriate proba-
bilities to each state–action pair.

For any π ∈ ΠR, we can define the transition probabil-
ity matrix and the reward vector as follows: Pπ(s, s′) =∑
a∈A P (s, a, s′) · π(s, a) and rπ(s) =

∑
a∈A r(s, a) ·

π(s, a). We use Pa and ra to represent values for a
policy that always takes action a ∈ A. We also define
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a matrix A and a vector b as follows:

AT =
(
I− γPT

a1 I− γPT
a2 · · ·

)
, bT =

(
rTa1 rTa2 · · ·

)
Values A and b are usually used in approximate linear
programming (ALP) (Schweitzer & Seidmann, 1985)
and linear program formulations of MDPs (Puterman,
2005). The main objective in solving an MDP is to
compute a policy with the maximal return.

Definition 2.1. The return ρ : ΠR → R of π ∈ ΠR is
defined as: ρ(π) =

∑∞
n=0 α

T(γ · Pπ)n rπ. The optimal
policy solves π? ∈ arg maxπ∈ΠR ρ(π) and we use ρ? =
ρ(π?).

DRADP relies on two main solution concepts: state
occupancy frequencies and value functions. State oc-
cupancy frequencies—or measures—intuitively repre-
sent the probability of terminating in each state when
the discount factor γ is interpreted as a probability
of remaining in the system (Puterman, 2005). State-
action occupancy frequencies are defined for state–
action pairs and represent the joint probability of be-
ing in the state and taking the action.

State occupancy frequency for π ∈ ΠR is denoted by
dπ ∈ RS and is defined as:

dπ = (1−γ) ·
∞∑
t=0

(γ ·PT
π )tα = (1−γ) ·

(
I− γ · PT

π

)−1
α .

State-action occupancy frequency is denoted by uπ ∈
RW(its set-valued equivalent is U(π)) and is a product
of state–occupancy frequencies and action probabili-
ties:

uπ(s, a) = dπ(s) · π(s, a) , U(π) = {uπ} .

Note that U(π) is a set-valued function with the out-
put set of cardinality 1. State and state-action occu-
pancy frequencies represent valid probability measures
over S and W respectively. We use d? = dπ? and
u? = uπ? to denote the optimal measures. Finally, we
use u|π ∈ RS+ for π ∈ ΠD to denote a restriction of u
to π such that u|π(s) = u(s, π(s)).

State-action occupancy frequencies are closely related
to the set U of dual feasible solutions of the linear pro-
gram formulation of an MDP, which is defined as (e.g.
Section 6.9 of (Puterman, 2005)):

U =
{
u ∈ RW+ : ATu = (1− γ) · α

}
. (2.1)

The following well-known proposition characterizes
the basic properties of the set U .

Proposition 2.2 (e.g. Theorem 6.9 in (Puterman,
2005)). The set of occupancy frequencies satisfies the
following properties.

(i) U =
⋃
π∈ΠR

U(π) = conv(
⋃
π∈ΠD

U(π)).
(ii) For each ū ∈ U , define π′(s, a) =

ū(s, a)/
∑
a′∈A ū(s, a′). Then uπ′ = ū.

(iii) 1Tu = 1 for each u ∈ U .
(iv) ATu = (1− γ) · α for each u ∈ U .

Part (i), in particular, holds because deterministic
policies represent the basic feasible solutions of the
dual linear program for an MDP.

A value function vπ ∈ RS of π ∈ ΠR maps states to the
return obtained when starting in them and is defined
by:

vπ =

∞∑
t=0

(γ · Pπ)trπ = (I− γ · Pπ)
−1
rπ .

The set of all possible value functions is denoted by
V. It is well known that a policy π? with the value
function v? is optimal if and only if v? ≥ vπ for every
π ∈ ΠR. The value function update Lπ for a policy
π and the Bellman operator L are defined as: Lπv =
γPπv + rπ and Lv = maxπ∈ΠR Lπv.

The optimal value function v? satisfies Lv? = v?. The
following proposition states the well-known connection
between state–action occupancy frequencies and value
functions.

Proposition 2.3 (e.g. Chapter 6 in (Puterman,
2005)). For each π ∈ ΠR: ρ(π) = Eα [vπ(S)] =
Euπ [r(W )] /(1− γ) .

The value function, computed by a dynamic program-
ming algorithm, is typically then used to derive the
greedy policy. A greedy policy takes in every state an
action that maximizes the expected conditional return.

Definition 2.4. A policy π ∈ ΠD is greedy with re-
spect to a value function v when Lπv = Lv; in other
words:

π(s) ∈ arg max
a∈A

(
r(s, a) + γ ·

∑
s′∈S

P (s, a, s′) · v(s′)
)
,

for each s ∈ S with ties broken arbitrarily.

MDP is a very general model. Often, specific prop-
erties of the MDP can be used to compute better so-
lutions and to derive tighter bounds. One common
assumption—used to derive L2 bounds for API—is a
smoothness of transition probabilities (Munos, 2003),
also known as the concentration coefficient (Munos,
2007); this property can be used to derive tighter
DRADP bounds.

Assumption 1 (Concentration coefficient). There ex-
ists a probability measure µ ∈ [0, 1]S and a con-
stant C ∈ R+ such that for all s, s′ ∈ S and all
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π ∈ ΠD the transition probability is bounded as:
P (s, π(s), s′) ≤ C · µ(s′).

3. Distributionally Robust
Approximate Dynamic Programming

In this section, we formalize DRADP and describe
it in terms of generic optimization problems. Prac-
tical DRADP implementations are sampled versions
of the optimization problems described in this section.
However, as it is common in ADP literature, we do
not explicitly analyze the sampling method used with
DRADP in this paper, because the sampling error can
simply be added to the error bounds that we derive.
The sampling is performed and errors bounded identi-
cally to approximate linear programming and approx-
imate bilinear programming—state and action sam-
ples are used to select a subset of constraints and vari-
ables (de Farias & van Roy, 2003; Petrik et al., 2010;
Petrik & Zilberstein, 2011).

The main objective of ADP is to compute a policy
π ∈ ΠR that maximizes the return ρ(π). Because the
MDPs of interest are very large, a common approach
is to simplify them by restricting the set of policies
that are considered to a smaller set Π̃ ⊆ ΠR. For
example, policies may be constrained to take the same
action in some states; or to be greedy with respect to
an approximate value function. Since it is not possible
to compute an optimal policy, the common objective
is to minimize the policy loss. Policy loss captures
the difference in the discounted return when following
policy π instead of the optimal policy π?.

Definition 3.1. The expected policy loss of π ∈ ΠR is
defined as:

ρ? − ρ(π) =
bT(u? − uπ)

1− γ
= ‖v? − vπ‖1,α ,

where ‖ · ‖1,α represents an α-weighted L1 norm.

ADP relies on approximate value functions Ṽ ⊆ V that
are a subset of all value functions. In DRADP, ap-
proximate value functions are used simultaneously to
both restrict the space of policies and to approximate
their returns. We, in addition, define a set of approx-
imate occupancy frequencies Ũ(π) ⊇ U(π) that are a
superset of the true occupancy frequencies. We call
any element in the appropriate approximate sets rep-
resentable.

We consider linear function approximation, in which
the values for states are represented as a linear combi-
nation of nonlinear basis functions (vectors). For each
s ∈ S, we define a vector φ(s) of features with |φ|
being the dimension of the vector. The rows of the

basis matrix Φ correspond to φ(s), and the approxi-
mation space is generated by the columns of Φ. Ap-
proximate value functions and policy-dependent state
occupancy measures for linear approximations are de-
fined for some given feature matrices Φu and Φv as:

Ṽ =
{
v ∈ V : v = Φvx, x ∈ R|φ|

}
, (3.1)

Ũ(π) =
{
u ∈ RA+ :

ΦT
uATu = (1− γ) · ΦT

uα,
u(s, a) ≤ π(s, a)

}
. (3.2)

Clearly, Ũ(π) ⊇ U(π) from the definition of uπ. We
will assume the following important assumption with-
out reference for the remainder of the paper.

Assumption 2. One of the features in each of φu and
φv is a constant; that is, 1 = Φuxu and 1 = Φvxv for
some xu and xv.

The following lemma, which can be derived directly
from the definition of Ũ and Proposition 2.2, shows
the importance of Assumption 2.

Lemma 3.2. Suppose that Assumption 2 holds. Then
for each π ∈ ΠR: u ∈ Ũ(π)⇒ 1Tu = 1 .

Approximate policies Π̃ are most often represented
indirectly—by assuming policies that are greedy to the
approximate value functions. The set G of all such
greedy policies is defined by: G = { π ∈ ΠD : Lπv =
Lv, v ∈ Ṽ }. Although DRADP applies to other ap-
proximate policy sets we will particularly focus on the
set Π̃ = G.

We are now ready to define the basic DRADP formu-
lation which is analyzed in the remainder of the paper.

Definition 3.3. DRADP computes an approximate
policy by solving the following optimization problem:

arg max
π∈Π̃

ρ̃(π) = arg min
π∈Π̃

(
ρ? − ρ̃(π)

)
, (DRADP)

where the function ρ̃ : ΠR → R is defined by:

ρ̃(π) = max
v∈Ṽ

(
αTv − max

u∈Ũ(π)

uT(Av − b)

1− γ

)
. (3.3)

Note that the solution of (DRADP) is a policy; this
policy is not necessarily greedy with respect to the op-
timal v in (3.3) unlike in most other ADP approaches.
The expression (3.3) can be understood intuitively as
follows. The first term, αTv, represents the expected
return if v is the value function of π. The second term
maxu∈Ũ(π)(u

T(Av − b))/(1− γ) is a penalty function,
which offsets any gains when v 6= vπ and is motivated
by the primal-dual slack variables in the LP formula-
tion of the MDP. Given this interpretation, DRADP
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simultaneously restricts the set of value functions and
upper-approximates the penalty function.

The following theorem states an important property of
Definition 3.3, which is used to derive approximation
error bounds.

Theorem 3.4. For each π ∈ ΠR, ρ̃ lower-bounds the
true return: ρ̃(π) ≤ ρ(π). In addition, when Φu and
Φv are invertible and π ∈ ΠD then ρ(π) = ρ̃(π).

We now show that the lower bound ρ̃ in (3.3) can be
simplified in some cases by ignoring the value functions
for any π ∈ ΠR; the formulation (3.3) will neverthe-
less be particularly useful in the theoretical analysis
because it relates value functions and occupancy fre-
quencies.

ρ̃′(π) = min
u∈Ũ ′(π)

uTb

1− γ
, (3.4)

where Ũ ′(π) is defined equivalently to Ũ(π) with the
exception that Φu = Φv = Φ for some Φ.

Proposition 3.5. When Φv = Φu, then ρ̃(π) = ρ̃′(π).
When Φv 6= Φu, then define Ũ ′ and ρ̃′ using a new
representation Φ′ = [Φv Φu]. Then: ρ̃(π) = ρ̃′(π).

For the remainder of the paper assume that Φv = Φu
since assuming that they are the same does not reduce
the solution quality.

A potential challenge with DRADP is in representing
the set of approximate policies Π̃, because a policy
must generalize to all states even when computed from
a small sample. Note, that for a fixed value function
v in (3.3) the policy that solves minπ∈Π̃ ρ̃(π) is not
necessarily the greedy with respect to v. The following
representation theorem, however, shows that when the
set of representable policies Π̃ is sufficiently rich, then
the computed policy will be greedy with respect to a
representable value function.

Theorem 3.6. Suppose that Π̃ ⊇ G. Then:

(i) maxπ∈Π̃ ρ̃(π) = maxπ∈G ρ̃(π).
(ii) ∃π̄ ∈ arg maxπ∈Π̃ ρ̃(π) such that π̄ ∈ G.

Note that the assumption Π̃ ⊇ G simply implies that
DRADP can select a policy that is greedy with respect
to any approximate value function v ∈ Ṽ. This is an
implicit assumption in many ADP algorithms, includ-
ing ALP and LSPI. We state the assumption explicitly
to indicate results that do not hold in case there are
additional restrictions on the set of policies that is con-
sidered.

Theorem 3.6 implies that it is only necessary to con-
sider policies that are greedy with respect to repre-
sentable value functions which is the most common

approach in ADP. However, other approaches for rep-
resenting policies may have better theoretical or em-
pirical properties and should be also studied.

4. Approximation Error Bounds

This section describes the a priori approximation
properties of DRADP solutions; these bounds can be
evaluated before a solution is computed. We focus on
several types of bounds that not only show the per-
formance of the method, but also make it easier to
theoretically compare DRADP to existing ADP meth-
ods. These bounds show that DRADP has stronger
theoretical guarantees than most other ADP methods.
The first bound mirrors some simple bounds for ap-
proximate policy iteration (API) in terms of the L∞
norm (Munos, 2007):

lim sup
k→∞

‖v? − vπk‖∞ ≤
2 · γ

(1− γ)2
lim sup
k→∞

εk , (4.1)

where πk and εk are the policy and L∞ approximation
error at iteration k.

Theorem 4.1. Suppose that Π̃ ⊇ G and that π̄ ∈
arg maxπ∈Π̃ ρ̃(π) in (DRADP). The policy loss ρ? −
ρ(π̄) is then bounded as:

‖v? − vπ̄‖1,α ≤
2

1− γ
min
v∈Ṽ
‖v − Lv‖∞ . (4.2)

Theorem 4.1 highlights several advantages of the
DRADP bound (4.2) over (4.1): 1) it bounds the ex-
pected loss ‖v? − vπ̄‖1,α instead of the worst-case loss
‖v? − vπ̄‖∞, 2) it is smaller by a factor of 1/(1 − γ),
3) it holds in finite time instead of a limit, and 4) its
right-hand side is with respect to the best approxima-
tion of the optimal value function instead of the worst
case approximation over all iteration. In comparison
with approximate linear programming bounds, (4.2)
bounds the true policy loss and not simply the ap-
proximation of v? (de Farias & van Roy, 2003). The
limitation of (4.2), however, is that it relies on an L∞
norm which can be quite conservative. We address
this issue in two ways. First, we prove a bound of a
different type.

Theorem 4.2. Suppose that Π̃ ⊇ G and that π̄ ∈
arg maxπ∈Π̃ ρ̃(π) in (DRADP). Then, the policy loss
ρ? − ρ(π̄) is bounded as:

‖v? − vπ̄‖1,α ≤ min
v∈Ṽ,v≤v?

‖v − v?‖1,α . (4.3)

The bound (4.3), unlike bounds in most ADP algo-
rithms, does not contain a factor of 1/(1 − γ) of any
power. Although (4.3) does not involve an L∞ norm,
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it does require that v ≤ v? which may be undesirable.
Next, we show bounds that rely purely on weighted
norms under additional assumptions on the concen-
tration coefficient.

As mentioned above, Assumption 1 can be used to
improve the solutions of DRADP and to derive tighter
bounds. Note that this assumption must be known
in advance and cannot be gleaned from the samples.
To this end, for some fixed C ∈ R+ and µ ∈ RS in
Assumption 1, define:

ŨS(π) =

{
u ∈ Ũ(π) :

∑
a∈A

u(s, a) ≤ σ(s), ∀s ∈ S

}
,

σ(s) = γ · µ(s) + (1− γ) · α(s),

ρ̃S(π) = max
v∈Ṽ

min
u∈ŨS(π)

(
αTv − uT(Av − b)

1− γ

)
.

These assumptions imply the following structure of all
admissible state frequencies.

Lemma 4.3. Suppose that Assumption 1 holds with
constants C and µ. Then: d ≤ C ·σ for each d ∈ ŨS(π)
and π ∈ ΠR.

The following theorem shows a tighter bound on the
DRADP policy loss for MDPs that satisfy the smooth-
ness assumption.

Theorem 4.4. Suppose that Assumption 1 holds
with constants C and µ, Π̃ ⊇ G, and that π̄ ∈
arg maxπ∈Π̃ ρ̃(π) in (DRADP). Then, the loss of π̄
is bounded as:

ρ? − ρ(π̄) ≤ 2 · C
1− γ

min
v∈Ṽ
‖v − Lv‖1,σ . (4.4)

The bound in Theorem 4.4 is similar to comparable
Lp bounds for API (Munos, 2003), except it relies on
a weighted L1 norm instead of the L2 norm and pre-
serves all the advantages of Theorem 4.1. Theorem 4.4
exploits that the set of occupancy frequencies is re-
stricted under the smoothness assumption which leads
to a tighter lower bound ρ̃S on the return.

Finally, DRADP is closely related to robust
ABP (Petrik & Zilberstein, 2009; 2011) but provides
several significant advantages. First, DRADP does not
require transitive feasible (Petrik & Zilberstein, 2011)
value functions, which simplifies the use of constraint
generation. Second, ABP minimizes L∞ bounds ρr :
ΠR → R on the policy loss, which can be too conserva-
tive. In fact, it is easy to show that DRADP solutions
can be better than ABP solutions by an arbitrarily
large factor.

5. Computational Models

In this section, we describe how to solve the DRADP
optimization problem. Since DRADP generalizes
ABP (Petrik & Zilberstein, 2009), it is necessarily
NP complete to solve in theory, but relatively easy
to solve in practice. Note that the NP-completeness
is in terms of the number of samples and features and
not in the number of states or actions of the MDP.
In addition, the NP completeness a is favorable prop-
erty when compared to API algorithms, such as LSPI,
which may never converge (Lagoudakis & Parr, 2003).

To solve DRADPs in practice, we derive bilinear and
mixed integer linear program formulations for which
many powerful solvers have been developed. These
formulations lead to anytime solvers—even approxi-
mate solutions result in valid policies—and can there-
fore easily trade off solution quality with time com-
plexity.

To derive bilinear formulations of DRADP, we repre-
sent the set of policies Π̃ using linear equalities as:
Π̃ =

{
π ∈ [0, 1]W :

∑
a∈A π(s, a) = 1

}
. This set can

be defined using matrix notation as Bπ = 1 and π ≥ 0,
where B : |S| × |W| is defined as: B(s′, (s′, a)) = 1
when s = s′ and 0 otherwise. Clearly Π̃ ⊇ G, which im-
plies that the computed policy is greedy with respect
to a representable value function from Theorem 3.6
even as sampled. It would be easy to restrict the set Π̃
by assuming the same action must be taken in a subset
of states: one would add constraints π(s, a) = π(s′, a)
for some s, s′ ∈ S and all a ∈ A.

When the set of approximate policies is represented by
linear inequalities, the DRADP optimization problem
can be formulated as the following separable bilinear
program (Horst & Tuy, 1996).

max
π,λ1,λ2

αTΦλ1 − πTλ2

s.t. Bπ = 1, π ≥ 0, λ2 ≥ 0,

(1− γ) · λ2 ≥ AΦλ1 − b .

(5.1)

Bilinear programs are a generalization of linear pro-
grams and are in general NP hard to solve.

Theorem 5.1. Suppose that Π̃ ⊇ G. Then the sets of
optimal solutions of (5.1) and (DRADP) are identical
and there exists an optimal solution (π̄, λ̄1, λ̄2) of (5.1)
such that:

(i) π̄ is deterministic and greedy with respect to Φλ̄1,
(ii) π̄Tλ̄2 = 0.

Because there are few, if any, industrial solvers for
bilinear programs, we reformulate (5.1) as a mixed
integer linear program (MILP). Any separable bilin-
ear program can be formulated as a MILP (Horst &
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Tuy, 1996), but such generic formulations are imprac-
tical because they lead to large MILPs with weak lin-
ear relaxations. Instead, we derive a more compact
and structured MILP formulation that exploits the
existence of optimal deterministic policies in DRADP
(see (i) of Theorem 5.1) and is based on McCormic
inequalities on the bilinear terms (Linderoth, 2005).
To formulate the MILP, assume a given upper bound
τ ∈ R on any optimal solution λ2

? of (5.1) such that
τ ≥ λ2

?(s, a) for all s ∈ S and a ∈ A. Then:

max
z,π,λ1,λ2

αTΦλ1 − 1Tz

s.t. z ≥ λ2 − τ · (1− π),

(1− γ) · λ2 ≥ AΦλ1 − b,

Bπ = 1, π ∈ {0, 1}|S||A|

z ≥ 0, λ2 ≥ 0 .

(5.2)

Theorem 5.2. Suppose that Π̃ ⊇ G and (π̄, λ̄1, λ̄2, z̄)
is an optimal solution of (5.2). Then, (π̄, λ̄1, λ̄2) is an
optimal solution of (5.1) with the same objective value
given that τ > ‖λ̄2‖∞.

As discussed above, any practical implementation of
DRADP must be sample-based. The bilinear program
(5.1) is constructed from samples very similarly to
ALPs (e.g. Sec 6 of (de Farias & van Roy, 2003))
and identically to ABPs (e.g. Sec 6 of (Petrik & Zil-
berstein, 2011)). Briefly, the formulation involves only
the rows of A that correspond to transitions of sampled
state-action pairs and b entries are estimated from the
corresponding rewards. As a result, there is one λ1

variable for each feature, and λ2 and π are nonzero
only for the sampled rows of A (zeros do not need to
be considered). The size of the optimization problem
(5.1) is then independent of the number of states and
actions of the MDP; it depends only on the number of
samples and features.

6. Experimental Results

In this section, we experimentally evaluate the empiri-
cal performance of DRADP. We present results on the
inverted pendulum problem—a standard benchmark
problem—and a synthetic chain problem. We gather
state and action samples in advance and solve MILP
(5.2) using IBM CPLEX 12.2. We then compare the
results to three related methods which work on of-
fline samples: 1) LSPI (Lagoudakis & Parr, 2003), 2)
ALP (de Farias & van Roy, 2003), and 3) ABP (Petrik
& Zilberstein, 2009). While solving the MILP formula-
tion of DRADP is NP hard (in the number of features
and samples), this does not mean that the computa-
tion takes longer than for other ADP methods; for ex-
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Figure 2. Expected return on the chain benchmark

ample, the computation time of LSPI is unbounded in
the worst case (there are no convergence guarantees).
In the experiments, we restrict the computation time
for all methods to 60s.

Inverted Pendulum The goal in the inverted pen-
dulum benchmark problem is to balance an inverted
pole by accelerating a cart in either of two direc-
tions (Lagoudakis & Parr, 2003). There are three ac-
tions that represent applying the force of u = −50N ,
u = 0N , and u = 50N to the cart with a uniform noise
between −10N and 10N . The angle of the inverted
pendulum is governed by a differential equation. We
used the standard features for this benchmark problem
for all the methods: 9 radial basis functions arranged
in a grid over the 2-dimensional state space with cen-
ters µi and a constant term required by Assumption 2.
The problem setting, including the initial distribution
is identical to the setting in (Lagoudakis & Parr, 2003).

Fig. 1 shows the number of balancing steps (with a
3000-step bound) for each method as a function of the
number of training samples averaged over 5 runs. The
figure does not show error bars for clarity; the vari-
ance was close to 0 for DRADP. The results indicate
that DRADP computes a very good solution for even a
small number of samples and significantly outperforms
LSPI. Note the poor performance of ABP and ALP
with the 10 standard features; better results have been
obtained with large and different feature spaces (Petrik
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et al., 2010) but even these do not match DRADP. The
solution quality of ABP decreases with more samples,
because the bounds become more conservative and the
optimization problems become harder to solve.

Chain Problem Because the solution quality of
ADP methods depends on many factors, good results
on a single benchmark problem do not necessarily
generalize to other domains. We, therefore, compare
DRADP to other methods on a large number of ran-
domly generated chain problems. This problem con-
sists of 30 states s1 . . . s30 and 2 actions: left and
right with 10% chance of moving the opposite way.
The features are 10 orthogonal polynomials. The re-
wards are 0 except: r(s2) = −50, r(s3) = 4, r(s4) =
−50, r(s20) = 10. Fig. 2 shows the results of 1000
instantiations with randomly chosen initial distribu-
tions and indicates that DRADP significantly outper-
forms other methods including API (a simple version
of LSPI).

7. Conclusion

This paper proposes and analyzes DRADP—a new
ADP method. DRADP is based on a mathematical
optimization formulation—like ALP—but offers sig-
nificantly stronger theoretical guarantees and better
empirical performance. The DRADP framework also
makes it easy to improve the solution quality by in-
corporating additional assumptions on state occupa-
tion frequencies, such as the small concentration co-
efficient. Given the encouraging theoretical and em-
pirical properties of DRADP, we hope it will lead to
better methods for solving large MDPs and will help
to deepen the understanding of ADP.
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