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Abstract

Sustainable resource management in many domains
presents large continuous stochastic optimization prob-
lems, which can often be modeled as Markov deci-
sion processes (MDPs). To solve such large MDPs,
we identify and leverage linearity in state and action
sets that is common in resource management. In par-
ticular, we introduce linear dynamic programs (LDPs)
that generalize resource management problems and par-
tially observable MDPs (POMDPs). We show that the
LDP framework makes it possible to adapt point-based
methods–the state of the art in solving POMDPs–to
solving LDPs. The experimental results demonstrate
the efficiency of this approach in managing the water
level of a river reservoir. Finally, we discuss the re-
lationship with dual dynamic programming, a method
used to optimize hydroelectric systems.

1 Introduction
Sequential decision making under uncertainty is ubiquitous
in many fields, including planning in artificial intelligence
and inventory management in operations research. A conve-
nient framework for modeling these problems is the Markov
decision process (MDP), which assumes that future states
are independent of the history of the process given its cur-
rent state. While small MDPs are easy to solve, most re-
source management domains involve MDPs with an infinite
number of states and actions. We present and analyze novel
point-based methods for solving such problems.

Consider, for example, the problem of managing water
discharge from a river reservoir to produce hydroelectric
power. Among renewable sources, hydroelectricity has the
lowest carbon footprint per MWh and is the most signifi-
cant source of renewable energy, supplying about 20% of
the world electricity according to the U.S. Geological Sur-
vey. Increasing the efficiency of reservoir management can
therefore significantly reduce carbon emissions.

Hydroelectric power is usually produced by discharging
water from a reservoir to activate a turbine. The operator
of the reservoir must decide how much water to discharge
at each time in order to maximize energy production, while
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satisfying important environmental constraints such as irri-
gation requirements and flood prevention. This sequential
decision problem results in a very large MDP–the state and
action spaces are both continuous. The state space, in a sim-
ple model, may represent the water level in the reservoir,
while actions correspond to the amount of water discharge.
A richer model could include additional factors such as the
weather or the demand for electricity, but even a basic model
cannot be solved directly using standard algorithms such as
value or policy iteration.

Large MDPs are typically solved using reinforcement
learning methods such as approximate dynamic program-
ming [Powell, 2007; Petrik and Zilberstein, 2009]. These
methods are very general and can be applied to problems
with an infinite number of states and actions. However,
they require good approximation features and state samples
to achieve good performance. Designing such features is
non-trivial and the guarantees provided by these methods are
often quite weak. Furthermore, approximate dynamic pro-
gramming often cannot take advantage of additional struc-
ture present in the problem domain.

To address these deficiencies, we propose a new approach
that–unlike standard reinforcement learning techniques–
takes advantage of the structure in the domain. Specifically,
actions and transitions often influence the state space lin-
early (e.g. water inflow and discharge change the reservoir
volume linearly) and can be modeled as a linearly controlled
problem (LCP) [Woerner, 2010]–a type of a linear stochastic
program. We show that this property restricts the value func-
tion, which is the value of being in each state, to be piece-
wise linear and convex. Such value functions can than be ap-
proximated efficiently using methods for solving POMDPs.

Linearly controlled problems are apparently very different
from POMDPs. The properties of POMDPs that make them
amenable to point-based dynamic programming are: 1) the
number of actions is small, 2) each action can be taken in all
belief states, and 3) the value function update for each ac-
tion is linear. In contrast, linearly controlled problems have
a continuous action space and some of the actions cannot be
executed in certain states. For example, the amount of wa-
ter discharged is limited by the demand for electricity and
the available water. Nevertheless, we show that the Fenchel
dual of a linearly controlled problem closely resembles a
POMDP and can be solved using similar methods.



The remainder of the paper is organized as follows. First,
we describe the MDP model and some basic notation in Sec-
tion 2. Section 3 introduces linear dynamic programs, a
special case of dynamic programs. Next, we describe par-
tially observable Markov decision processes in Section 4 and
linearly controlled problems in Section 5, showing how to
formulate them as linear dynamic programs. Section 6 de-
scribes a class of point-based solvers for linear dynamic pro-
grams, which are inspired by point-based methods for solv-
ing POMDPs. We describe an application of these point-
based solvers to reservoir management in Section 7, and
discuss related work from the hydroelectricity management
literature in Section 8.

2 Notation and Framework
This section describes the basic concepts and notation that
we use. A Markov Decision Process (MDP) is a tuple
(S,A,W, P, r, α). Here, S is a compact set of states, A is a
compact set of actions, P : S × A × S 7→ [0, 1] is the tran-
sition function (P (s, a, s′) is the probability of transiting to
state s′ from state s given action a), and r : S × A 7→ R+

is a continuous reward function. The set-valued function
W : S ⇒ A maps each state to the set of allowed ac-
tions. The initial distribution is: α : S 7→ [0, 1], such
that

∑
s∈S α(s) = 1. The set of time steps is denoted as

T = {0 . . . T − 1}.
A decision rule d : S → A determines the action to be

taken in each possible state of the MDP. The set of all deci-
sion rules is D. A collection of decision rules, one per time
step, is a deterministic Markov policy π : T × S 7→ A,
which assigns an action to each state of the MDP for every
time step. The set of all deterministic policies is denoted as
Π.

The rewards and transitions for a decision rule d are
defined as follows: rd(s) = r(s, d(s)) and Pd(s, s

′) =
P (s, d(s), s′). The focus of this paper is on the finite hori-
zon γ-discounted expected sum of rewards–called the re-
turn–over T steps. The policy π is a collection of decision
rules such that π(t) = dt. Let St be a random variable that
represents the state at time t, distributed according to the
probability distributions uπ(t) : S → [0, 1]. The return of a
policy π is then defined as follows:

ρ(π) = E

[∑
t∈T

γtr(St, dt(St))

]
.

The distributions uπ(t) are unique and depend on the policy
as follows: uπ(t+ 1) = PT

dt
uπ(t) and uπ(0) = α. A policy

π∗ is optimal if it maximizes the cumulative return ρ.
The finite-horizon value function v : T × S → R for

a policy π represents the return obtained when starting in a
given state and is formally defined for t̄ ∈ T as follows:

vπ(t̄, s) = E

[ ∑
t=t̄...T

γt−t̄ r(St, dt(St))

]
,

where uπ(t̄, s) = 1 and v(T, s) = 0. We use v(t) to denote
a vector of values for each state. The return for a policy π
with a value function vπ is Eα [vπ(0)]. The optimal value
function v∗ is the value function of the optimal policy π∗.

We use V = RS to denote the set of possible value functions
for any given time step.

The action-value function qπ : T × S × A 7→ R for
a policy π, also known as Q-function, represents the value
function in a state after taking action a. This function is
defined similarly to the value function:

qπ(t̄, s, a) = E

 ∑
t=t̄+1...T

γt−t̄−1 r(St, dt(St))

 ,
where uπ(t̄, s) = 1 and dt̄ = a. An optimal action-value
function q∗ is the action-value function of an optimal policy.

An important property of Markov decision processes is
that an optimal value function must satisfy the Bellman op-
timality condition, which is defined as follows.
Theorem 1 (Bellman optimality condition [Bellman,
1957]). A finite-horizon value function v∗(t) is optimal if
and only if it satisfies for all s ∈ S and t ∈ T the following
equality:

v∗(t, s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

P (s, a, s′)v∗(t+ 1, s′)

)
= max

a∈A
(r(s, a) + γq∗(t, s, a))

In addition, when q∗(t, s, a) is continuous in a for every s
and t, there exists an optimal Markov deterministic policy.

Minor technical assumptions may be needed to ensure the
existence of an optimal Markov policy due to the contin-
uous action spaces; please refer to Section 4.3 and 4.4 of
[Puterman, 2005] for more details. In general, a policy sat-
isfying the Bellman optimality condition is hard to compute
for continuous MDPs. In fact, when the action space is in-
finite, solving the optimization problem maxa∈A r(s, a) +
γq∗(t, s, a) may be nontrivial. Approximate dynamic pro-
gramming overcomes this problem by restricting value func-
tions to a small linear space [Petrik and Zilberstein, 2009].
We take an alternative approach that exploits the linear struc-
ture of the state and action spaces.

3 Linear Dynamic Programs
In this section, we define linear dynamic programs (LDPs)
and the main properties of their value functions. LDPs serve
to model the Bellman optimality equations; they can be used
to compute solutions, but are impractical for simulation. As
we show in the remainder of the paper, LDPs bridge resource
management problems and POMDPs and make it possible to
leverage point-based solvers.

The optimality equations for a linear dynamic program
are defined as follows:

v(t, s) = max
a∈A

(r(s, a) + γq(t, s, a)) (1)

q(t, s, a) = Z(v(t+ 1), s, a), (2)
where v(T ) = 0 and Z : V×S×A → R is a value function
transition functional. The function Z represents the change
in the value function due to the stochastic transitions of the
dynamic program. Its precise form depends on the specific
problem; we define the particular structure for POMDPs and
LCPs later in Sections 4 and 5.
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Figure 1: Example of a valid reward function in an LDP.

Definition 1 (Linear Dynamic Program). Equations (1) and
(2) are called a linear dynamic program if they satisfy the
following properties:

1. States and actions are real vectors: S ⊆ Rn,A ⊆ Rm.

2. The set A is a convex polyhedral set. Note that this set
is independent of the state.

3. The reward function r is piecewise linear concave in a
for any s, and is piecewise linear convex in s for any a.
Moreover, r is in particular of the following form:

r(s, a) = max
c∈Rn′

min
d∈Rm′

u(s, a, c, d)

u(s, a, c, d) = cT(Cs+q1) + dT(Da+q2) + cTQd+ q,

where n′ ≥ n, m′ ≥ m; C, D, Q are given matrices;
q1, q2, q3 are given vectors; and q is a given scalar. We
also assume that r(s, a) < M for some M .

4. Let f(s) = maxi∈I α
T
i s + βi be a piecewise linear

function. Then, the function Z satisfies the following
properties:

(a) For any a′ ∈ A there exists a set J such that:

Z(f, s, a′) = max
j∈J

αT
j s+ βj .

(b) For any fixed s′ ∈ S there exists a setK such that:

Z(f, s′, a) = min
k∈K

αT
ka+ βk.

Conditions 1, 2, 3, 4(b) in Definition 1 ensure that the op-
timal greedy action a in Equation (1) can be computed by
linear programming. In particular, computing the greedy ac-
tion involves maximizing a piecewise linear concave func-
tion over a polytope. Condition 4(a) ensures that the func-
tional Z maps piecewise linear value functions to piecewise
linear functions. Note that Conditions 3 and 4 require con-
vexity in the state space but concavity in the action space.
Finally, the condition r(s, a) < M ensures that value func-
tions do not become infinitely large.

To understand the formulation of Condition 3, notice that
the function r(s, a) is a general representation of the La-
grangian of a linear program [Vanderbei, 2001]. In particu-
lar, consider S = A = [−1, 1] and assume that the reward

function r(s, a) is represented by the following linear pro-
gram:

max
c

c ∗ s
s.t. −1 ≤ c ≤ 1

c ≤ a+ 1

(3)

The Lagrangian of this linear program is:
maxc mind≥0 cs−d1c+d1 +d2c+d2 +−d3c−d3a−d3,
where d ∈ R3; Figure 1 shows the plot of this function. The
formulation in Condition 3 also captures simpler functions,
such as maxc∈C mind∈D c

Ts + dTa, where C and D are
finite sets.

To simplify the notation, we assume that any piecewise
linear function can be represented by some finite set of in-
dices i ∈ I, vectors αi, and constants βi. That means that
the set I is a subset of a universal set of indices.

The reason for treating the value function v and action-
value function q separately in Equations (1) and (2) is that
the approximation errors in each of the equations have dif-
ferent sources and can be treated independently.

Linear dynamic programs are important because the opti-
mal value function at any step is piecewise linear. We will
later use this piecewise linearity to develop an approxima-
tion. The following proposition summarizes the basic prop-
erties of linear dynamic programs.
Proposition 1. Given a linear dynamic program, the opti-
mal value function v∗(t) is piecewise linear convex; that is,
for some finite set I:

v∗(t, s) = max
i∈I

αT
i s+ βi.

In addition, the action value function for any state s ∈ S is
piecewise linear concave; that is, for some finite set J :

q∗(t, s, a) = min
j∈J

αT
j a+ βj ,

and the optimization problem (1) reduces to a linear pro-
gram.

Proof. We prove the proposition by backward induction on
the time step. The proposition follows for time T directly
from the definition since q(T, s, a) = v(T, s) = 0. Now,
assume that v(t+1) = maxi∈I α

T
i s+βi. From 4(a) in Def-

inition 1, we get: q∗(t, s′, a)=mink∈K α
T
ka+ βk for a fixed

state s′. The greedy action optimization maxa∈A r(s, a) +
q(t, s, a) can be represented as the following linear program:

max
a∈A,d∈Rm′

γy + min
d∈Rm′

u(s, a, c, d)

s.t. y ≤ αT
ka+ βk k ∈ K

(4)

Since d is minimized over a cone, it can be easily translated
to a set of linear constraints, since the function represents
a Lagrangian [Boyd and Vandenberghe, 2004]. Following
standard linear programming theory [Vanderbei, 2001], we
get:

v(t, s)=max
a∈A

r(s, a)+γq(t, s, a)= max
ā∈extA

r(s, ā)+γq(t, s, ā).

Now, let o(ā) denote the objective value for the basic fea-
sible solution. Here, extA is a shorthand for the set of



basic feasible solutions of linear program (4); there is al-
ways a finite number of them and the optimal solution
is bounded above since r(s, a) < M . Then from 4(b):
v(t, s) = maxā∈extAmaxc∈C c

Ts + γo(ā), which implies
that the value function is piecewise linear since it is a maxi-
mum over a finite set of linear functions.

4 Modeling POMDPs Using LDPs
In this section, we show that partially observable Markov
decision processes (POMDPs) can be modeled as linear dy-
namic programs. We use this connection to adapt POMDP
solvers to linear dynamic programs.

Partially observable Markov decision processes
(POMDPs) are an extension of MDPs. Like an MDP,
a POMDP has an underlying state, but this state cannot
be directly observed. Formally, a POMDP is a tuple
(S,A,O, P,O, r, α), where states S, actions A, and
rewards r are defined identically as for MDPs. In ad-
dition, the set of observations is O with the observation
probabilities O : S × O → [0, 1]. The transition function
P : S × A × S → [0, 1] represents the state transition
probabilities.

It is well known that a POMDP can be recast as a so called
belief-state MDP (e.g. [Hauskrecht, 2000]), with the follow-
ing states and actions: (S̄,A, P̄ , r̄, ᾱ). The states

S̄ =

{
b ∈ [0, 1]|S|

∑
s∈S

b(s) = 1

}
represent probability distributions over the POMDP states.
The rewards and transitions are defined for b ∈ S̄ as follows:
P̄ (b, a, b′o) =

∑
s∈S

O(s, o)b(s) for each o ∈ O, where

b′o(s
′) =

∑
s∈S P (s, a, s′)O(s, o)b(s)∑

s∈S O(s, o)b(s)
for all s′ (5)

r̄(b) =
∑
s∈S

r(s, a)b(s). (6)

It is well known that the optimal finite-horizon value
functions in POMDPs are piecewise linear convex. We
adapt this result to show that the optimality equations for
POMDPs can be cast in terms of linear dynamic programs.
First, define the linear operator that represents the transitions
T (o, a) : R|S| → R|S| for all a ∈ A and o ∈ O as follows:
T (a, o)[s, s′] = P (s, a, s′)O(s, o), where [s, s′] represents
the index of the matrix. Also, define actions that represent
the convex combination of the original action space as fol-
lows:

Ā =

{
ā ∈ [0, 1]|A|

∑
a∈A

ā(a) = 1

}
.

Proposition 2. The following LDP expresses the optimality
equations of a t-step POMDP value function:

v(t, b) = max
ā∈Ā

 ∑
s∈S,a∈A

ā(a)r̄(s, ā)

+ γq(t, b, ā)

q(t, b, ā) =
∑
a∈A

ā(a)
∑
o∈O

v(t+ 1, T (o, a)b).

Proof. The above definition clearly satisfies Conditions
1, 2, 3 of Definition 1; the reward function is linear in both
ā and s. Condition 4(a) holds because q is a linear combi-
nation of a finite number of piecewise linear functions when
ā is fixed. Condition 4(b) holds because q is linear in ā.
Therefore, we need to show that the optimal solution of this
LDP is identical to an optimal solution of the POMDP.

Let v(t) denote a t-step optimal value function. This value
function is piecewise linear from Proposition 1. To simplify
the notation denote the probability of an observation o in a
belief state b as g(o, b) =

∑
s∈S O(s, o)b(s). The Bellman

optimality equation for the belief-state MDP model is then:

v(t, b) = max
a∈A

∑
s∈S

r(s, a)b(s) + γ
∑
o∈O

g(o, b)v(t+ 1, b′)

= max
a∈A

∑
s∈S

r(s, a)b(s) + γ
∑
o∈O

max
i∈I

αT
i (g(o, b)b′) + βi

= max
a∈A

∑
s∈S

r(s, a)b(s) + γ
∑
o∈O

v (t+ 1, T (a, o)b)

= max
ā∈Ā

∑
s∈S,a∈A

ā(a)r(s, a)b(s)+

∑
a∈A

ā(a)γ
∑
o∈O

v (t+ 1, T (a, o)b) ,

which is identical to the LDP definition.

Linear dynamic programs can be used to model problems
that exhibit similar linear properties as POMDPs. For exam-
ple, linear predictive state representations [Littman, Sutton,
and Singh, 2002] can also be cast and solved as linear dy-
namic programs.

5 Modeling Linearly Controlled Problems
In this section, we describe linearly controlled prob-
lems (LCPs) and show how to model their optimal solutions
as linear dynamic programs. LCPs are common in inventory
and resource management and are closely related to stochas-
tic linear programs [Kall and Mayer, 2005].

Linearly controlled problems, unlike POMDPs, are tradi-
tionally cast as minimization problems. In fact, we show that
minimization of linearly controlled problems can be recast
as maximization of linear dynamic programs.
Definition 2. A linearly controlled problem is a tuple
(S,A,W, c,Ω, µ, T ) where the compact set of admissible
states S ⊆ Rn and the compact set of admissible actions
A ∈ Rm are closed convex polyhedral sets. The set Ω rep-
resents possible external stochastic events. The set-valued
function W : S ⇒ A maps states to their admissible ac-
tions and is defined as:

W (s) = {a Es+ Fa ≤ g} 6= ∅;
there exists an admissible action for every state. The mea-
sure µ : B(Ω) → R represents the probabilities of ω ∈ Ω.
Transitions P : Ω× S ×A → S are defined as:

P (ω, s, a) = Aωs+Bωa+ cω.

Finally, the cost function c : S ×A → R is defined as:

c(s, a) = max
j∈J

dTj a+ max
k∈K

cTks.



Note that the cost function c is independently piecewise
linear for a and s; it is not possible to represent a function
that is jointly piecewise linear in the space of [sa].

The Bellman optimality equations for LCPs are as fol-
lows:

v∗(t, s) = min
a∈W (s)

c(s, a) + γq∗(t, s, a)

q∗(t, s, a) =
∑
ω∈Ω

µ(ω)v∗(t+ 1, Aωs+Bωa+ cω)

These Bellman optimality equations cannot be directly mod-
eled as an LDP, because the available actions depend on the
state; that is, the set W depends linearly on the state. We
show next that by taking the dual of the optimality condi-
tions, LCPs become compatible with LDPs.

We use a convex conjugate function of the cost and state–
action value to define a new action space Ā = Rm. A con-
vex conjugate function f : Rn → R ∪ {∞} is defined as
follows:

f∗(x∗) = sup
x∈Rn

xTx∗ − f∗(s).

It is an alternative representation of convex functions. The
conjugate dual of the cost function is defined as follows:

c∗(s, ā) = sup
a∈W (s)

āTa− c(s, a).

Proposition 3. The optimality equations for a t-step value
function of a linearly controlled problem can be expressed
as the following linear dynamic program:
v(t, s) = max

ā∈Ā
−c∗(s, ā) + γq(t, s, ā)

q(t, s, ā) = inf
a∈W (s)

āTa+
∑
ω∈Ω

µ(ω)v(t+ 1, Aωs+Bωa+ cω).

Proof. The dynamic program in the proposition trivially sat-
isfies the linearity requirements of Definition 1 from the
fact that a convex conjugate of a piecewise linear con-
vex function is a piecewise linear convex function. To
prove the correspondence to the optimality equations in
the proposition, we use Fenchel duality [Rockafellar, 1996;
Borwein and Lewis, 2000], which shows that a minimum
of a sum of two functions equals the maximum of the sum
of their conjugate duals. Formally, for given functions
f : E → R ∪ {∞} and g : Y → R ∪ {∞} and a linear
map A : E → Y . If f and g are convex and satisfy the
condition 0 ∈ core(dom g −Adom f) then:

inf
x∈E

f(x) + g(Ax) = sup
φ∈Y
−f∗(A∗φ) + g∗(−φ).

The theorem follows by using the conjugate dual of the state-
action value function q(t, s, a) to obtain a Fenchel dual rep-
resentation of v.

Now, Conditions 1 and 2 of Definition 1 are satisfied triv-
ially. To show Condition 3, note that the conjugate dual c∗
of the cost function can be written as the following linear
program using the fact that W (s) is a polyhedral set:

c∗(s, ā) = sup
a∈W (s)

āTa− c(s, a)

= max
a∈W (s)

(
āTa−max

j∈J
dTj a

)
−max

k∈K
cTks.

The formulation required in Condition 3 then follows by
simply writing the Lagrangian of this linear program. Note
that −∞ < −c∗(s, ā) < M for some M since W (s) is
compact and non-empty. Condition 4 follows by simple al-
gebraic manipulation.

Note that linear control problems have several important
limitations. First, the uncertainty is external and is not in-
fluenced by the states or actions. This is applicable in do-
mains in which the influence of the decision maker on the
environment is small. Second, the stochasticity may only
influence the availability of the actions but not their costs
or rewards. For example, while LCPs can be used easily to
model stochastic water inflows, they cannot be easily used
to model varying electricity prices.

6 Solving Linear Dynamic Programs
In this section, we describe a general point-based method for
solving linear dynamic programs. This point-based method
is motivated by methods for solving POMDPs [Lovejoy,
1991; Spaan and Vlassis, 2005; Pineau, Gordon, and Thrun,
2006]. We also summarize some theoretical properties of
the point-based methods for LDPs, which closely mirror the
results for similar POMDP algorithms.

Point based algorithms iteratively compute the value func-
tion in the order v(T ), v(T − 1), . . . , v(1). Since this value
function is piecewise linear, as Proposition 1 shows, it is
in principle possible to compute it precisely. However, the
number of linear segments grows very quickly, making such
an approach impractical. Instead, we approximate the value
function by its lower bound v and an upper bound v̄. As we
show below, this approach also guarantees that the computed
policy is close to optimal.

Both the upper bound v̄ and lower bound v on the value
function are piecewise linear convex functions and can be
represented as follows:

v̄(t, s) = max
i∈Īt

αT
i s+ βi v(t, s) = max

i∈It
αT
i s+ βi.

Here, we assume that the indexed values αi, βi are deter-
mined only by the respective sets I and Ī .

A generic point-based method is summarized in Algo-
rithm 1 and can be seen as an extension of the approach
proposed in [Pineau, Gordon, and Thrun, 2006]. Note that
the algorithm is presented with a focus on simplicity; we use
(α, β) ← and s → to represent individual piecewise linear
segments.

Algorithm 1 assumes that samples used to compute the
value function are already available. In practice, these sam-
ples may be obtained by forward simulation or by consider-
ing a uniform sample of the state space. Often, after a value
function is computed, a new set of samples can be gathered
by simulating the greedy policy.

Proposition 4. The value function vt in Algorithm 1 is a
lower on bound on the optimal value function v∗t . The value
function v̄t is an upper bound on the optimal value function.

The proof follows similarly to corresponding results for
POMDPs [Hauskrecht, 2000].



Algorithm 1: Point-based algorithm for linear dynamic
programs. Here, Z(I, s) is assumed to appropriately
modify the value function.

1 S̄T ← Sampled states using a greedy policy;
2 IT = ĪT ← {(0, 0)} ;
3 t← T ;
4 for t=T-1. . . 0 do

// Select a sampled state
5 foreach s ∈ S̄ do

// Compute action value q for the
lower and upper bounds

6 J ← Z(I, s), J̄ ← Z(Ī , s) ;
// Compute greedy actions using a

linear program

7 ā← arg maxa∈A r(s, a) + γminj∈J̄ α
T
i a+ βi ;

8 a← arg maxa∈A r(s, a) + γminj∈J α
T
i a+ βi ;

// This is a piecewise linear
function

9 It ← It ∪ {(α, β)← r(s, a) + γq(s, a)};
// Update the upper bound once the

value is computed for linear
combinations of all sampled states

10 Īt ←
{
s→

∑
s′∈K v̄(t, s′)

∑
s′∈K s

′ = s,K ⊆ S̄
}

;

Note that, when Algorithm 1 is applied to POMDPs, Z
can be simply computed by backward propagation of the
transition functions. Computing the value of Z in LCPs en-
tails solving a linear program, which is derived according
to the proof of Proposition 3. In some sense, the actions
computed then represent the dual variables of the linear pro-
gram. While this makes LCPs somewhat harder to solve
than POMDPs, our experiments indicate that this is not an
issue in practice.

7 Application to Reservoir Management
We implemented the point-based approach and applied it
to a realistic reservoir management problem. While in
practice, multiple reservoirs would typically be managed
simultaneously–with outflow of upstream reservoirs affect-
ing the inflow of downstream reservoirs–we consider a
single-reservoir setting for the sake of simplicity. We do
model both variable inflows and variable electricity prices.

The state space in this reservoir management problem is
defined by the tuple (l, i, e), where l ∈ R is the water vol-
ume in the reservoir available for discharge, i ∈ R is the
inflow to the reservoir, and e ∈ Rm are the energy demands
for m different electricity prices. The actions represent the
discharge d ∈ Rm and are assumed to be discretized. The
actions must satisfy the constraints on the water available for
discharge and the demands for electricity:{
d ∈ Rm

∑
i=1...m

d(i) ≤ i, d(i) ≤ e(i), i = 1 = m, . . . ,

}
.

The transitions (l, i, e) → (l′, i′, e′) are defined as fol-
lows. The water level in the next period is the current water
level plus the inflow minus the discharge: l′ ← l + i −

∑
k=1...m d(k). The random events are Ωi and Ωe that rep-

resent the uncertainties in the inflows and electricity prices.
The costs in the model are defined as follows:

c(l, i, e, d) =
∑

k=1...m

−p(k)d(k)+cd

( ∑
k=1...m

d(k)

)
+cll,

where p(k) are the electricity prices at the appropriate de-
mand levels, cd ∈ R → R and cl : R → R are piecewise
linear convex penalty functions for the discharge and water
level being outside the desirable bounds.

The data for inflows, desirable volume, and discharge
came from the Yellowtail River Dam in Montana and were
fit using generalized linear models. The inflows and energy
demands were assumed to follow a log-normal distribution.
We discretized the distribution into 14 intervals that cover
the observed inflows during the past 50 years.

The decision captures the planned discharge over 10 days,
with an upper bound due to electricity demand and structural
limitations of the dam. The planning horizon was 10 time
steps, which corresponds to 100 days. The policies were
then executed in a rolling horizon fashion, always using the
greedy policy for the 10-step value function.

The desirable water levels were obtained by matching his-
torical levels. We assigned a piecewise linear penalty for
water levels that are below 10% or above 90% of histori-
cal averages, with an additional very high penalty for over-
flowing the dam. Determining the right tradeoff between the
penalty for water levels and the revenue for electricity is an
important, hard modeling question. Computationally, this
assumption did not influence the solution properties signif-
icantly, although achieving the right water level is slightly
harder because it requires more planning. The results that
we report assign 70% of the value to the water level penalty
and 30% to revenue.

Figure 2 compares the performance of the proposed point-
based method with a greedy policy in terms of the value
function of the LDP. The results in the figure are averaged
over 10 full executions. Note that with only 10 states sam-
pled, the solution quality is close to optimal (upper bound
shown by the top dotted line). Figure 3 shows the increase
in computation time as a function of the number of states
sampled. While the increase is quadratic as expected, we
can obtain in a few seconds a near-optimal solution of this
problem with an infinite number of states and actions.

8 Discussion
We introduce linear dynamic programs for solving com-
plex resource management problems, and show how to ex-
tend point-based methods–originally developed for solving
partially observable MDPs–to linearly controlled problems.
Just like in POMDP solvers, these point-based methods take
advantage of the linear structure of the input problem. The
performance of the approach on a realistic reservoir manage-
ment problem is very encouraging, returning near-optimal
results within a few seconds.

The proposed point-based methods are closely related
to dual dynamic programming and linear stochastic pro-
grams [Pereira, 1985; 1989; Kall and Mayer, 2005; Shapiro,
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2011]. Linear stochastic programs do not have the notion of
states, actions, and value functions. Instead, the solution is
obtained by computing cuts. These cuts correspond to the
linear segments of the value function, but generally only the
lower bound is used. Recently, [Weinstein, Mansley, and
Littman, 2010] proposed a method for solving MDPs with
large action spaces, but they do not take advantage of linear
problem structures.

This new linear dynamic programming framework makes
it possible to adapt powerful POMDP solvers to a range of
sustainable resource management applications.
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