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Abstract

Multiagent planning and coordination problems are common and known to be com-
putationally hard. We show that a wide range of two-agent problems can be formulated
as bilinear programs. We present a successive approximation algorithm that significantly
outperforms the coverage set algorithm, which is the state-of-the-art method for this class
of multiagent problems. Because the algorithm is formulated for bilinear programs, it is
more general and simpler to implement. The new algorithm can be terminated at any time
and–unlike the coverage set algorithm–it facilitates the derivation of a useful online per-
formance bound. It is also much more efficient, on average reducing the computation time
of the optimal solution by about four orders of magnitude. Finally, we introduce an au-
tomatic dimensionality reduction method that improves the effectiveness of the algorithm,
extending its applicability to new domains and providing a new way to analyze a subclass
of bilinear programs.

1. Introduction

We present a new approach for solving a range of multiagent planning and coordination
problems using bilinear programming. The problems we focus on represent various exten-
sions of the Markov decision process (MDP) to multiagent settings. The success of MDP
algorithms for planning and learning under uncertainty has motivated researchers to extend
the model to cooperative multiagent problems. One possibility is to assume that all the
agents share all the information about the underlying state. This results in a multiagent
Markov decision process (Boutilier, 1999), which is essentially an MDP with a factored
action set. A more complex alternative is to allow only partial sharing of information
among agents. In these settings, several agents–each having different partial information
about the world–must cooperate with each other in order to achieve some joint objec-
tive. Such problems are common in practice and can be modeled as decentralized partially
observable MDPs (DEC-POMDPs) (Bernstein, Zilberstein, & Immerman, 2000). Some re-
finements of this model have been studied, for example by making certain independence
assumptions (Becker, Zilberstein, & Lesser, 2003) or by adding explicit communication
actions (Goldman & Zilberstein, 2008). DEC-POMDPs are closely related to extensive
games (Rubinstein, 1997). In fact, any DEC-POMDP represents an exponentially larger
extensive game with a common objective. Unfortunately, DEC-POMDPs with just two
agents are intractable in general, unlike MDPs that can be solved in polynomial time.

Despite recent progress in solving DEC-POMDPs, even state-of-the-art algorithms are
generally limited to very small problems (Seuken & Zilberstein, 2008). This has motivated
the development of algorithms that either solve a restricted class of problems (Becker,
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Lesser, & Zilberstein, 2004; Kim, Nair, Varakantham, Tambe, & Yokoo, 2006) or provide
only approximate solutions (Emery-Montemerlo, Gordon, Schneider, & Thrun, 2004; Nair,
Roth, Yokoo, & Tambe, 2004; Seuken & Zilberstein, 2007). In this paper, we introduce
an efficient algorithm for several restricted classes, most notably decentralized MDPs with
transition and observation independence (Becker et al., 2003). For the sake of simplicity,
we denote this model as DEC-MDP, although this is usually used to denote the model
without the independence assumptions. The objective in these problems is to maximize the
cumulative reward of a set of cooperative agents over some finite horizon. Each agent can
be viewed as a single decision-maker operating on its own “local” MDP. What complicates
the problem is the fact that all these MDPs are linked through a common reward function
that depends on their states.

The coverage set algorithm (CSA) was the first optimal algorithm to solve efficiently
transition and observation independent DEC-MDPs (Becker, Zilberstein, Lesser, & Gold-
man, 2004). By exploiting the fact that the interaction between the agents is limited
compared to their individual local problems, CSA can solve problems that cannot be solved
by the more general exact DEC-POMDP algorithms. It also exhibits good anytime behav-
ior. However, the anytime behavior is of limited applicability because solution quality is
only known in hindsight, after the algorithm terminates.

We develop a new approach to solve DEC-MDPs–as well as a range of other multiagent
planning problems–by representing them as bilinear programs. We also present an efficient
new algorithm for solving these kinds of separable bilinear problems. When the algorithm
is applied to DEC-MDPs, it improves efficiency by several orders of magnitude compared
with previous state-of the art algorithms (Becker, 2006; Petrik & Zilberstein, 2007a). In
addition, the algorithm provides useful runtime bounds on the approximation error, which
makes it more useful as an anytime algorithm. Finally, the algorithm is formulated for
general separable bilinear programs and therefore it can be easily applied to a range of
other problems.

The rest of the paper is organized as follows. First, in Section 2, we describe the basic
bilinear program formulation and how a range of multiagent planning problems can be
expressed within this framework. In Section 3, we describe a new successive approximation
algorithm for bilinear programs. The performance of the algorithm depends heavily on the
number of interactions between the agents. To address that, we propose in Section 4 a
method that automatically reduces the number of interactions and provides a bound on
the degradation in solution quality. Furthermore, to be able to project the computational
effort required to solve a given problem instance, we develop offline approximation bounds
in Section 5. In Section 6, we examine the performance of the approach on a standard
benchmark problem. We conclude with a summary of the results and a discussion of future
work that could further improve the performance of this approach.

2. Formulating Multiagent Planning Problems as Bilinear Programs

We begin with a formal description of bilinear programs and the different types of multiagent
planning problems that can be formulated as such. In addition to multiagent planning
problems, bilinear programs can be used to solve a variety of other problems such as robotic
manipulation (Pang, Trinkle, & Lo, 1996), bilinear separation (Bennett & Mangasarian,

236



A Bilinear Programming Approach for Multiagent Planning

1992), and even general linear complementarity problems (Mangasarian, 1995). We focus on
multiagent planning problems where this formulation turns out to be particularly effective.

Definition 1. A separable bilinear program in the normal form is defined as follows:

maximize
w,x,y,z

f(w, x, y, z) = sT1w + rT1 x+ xTCy + rT2 y + sT2 z

subject to A1x+B1w = b1

A2y +B2z = b2

w, x, y, z ≥ 0

(1)

The size of the program is the total number of variables in w, x, y and z. The number of
variables in y determines the dimensionality of the program1.

Unless otherwise specified, all vectors are column vectors. We use boldface 0 and 1
to denote vectors of zeros and ones respectively of the appropriate dimensions. This pro-
gram specifies two linear programs that are connected only through the nonlinear objective
function term xTCy. The program contains two types of variables. The first type includes
the variables x, y that appear in the bilinear term of the objective function. The second
type includes the additional variables w, z that do not appear in the bilinear term. As we
show later, this distinction is important because the complexity of the algorithm we propose
depends mostly on the dimensionality of the problem, which is the number of variables y
involved in the bilinear term.

The bilinear program in Eq. (1) is separable because the constraints on x and w are
independent of the constraints on y and z. That is, the variables that participate in the
bilinear term of the objective function are independently constrained. The theory of non-
separable bilinear programs is much more complicated and the corresponding algorithms
are not as efficient (Horst & Tuy, 1996). Thus, we limit the discussion in this paper to
separable bilinear programs and often omit the term “separable”. As discussed later in
more detail, a separable bilinear program may be seen as a concave minimization problem
with multiple local minima. It can be shown that solving this problem is NP-complete,
compared to polynomial time complexity of linear programs.

In addition to the formulation of the bilinear program shown in Eq. (1), we also use the
following formulation, stated in terms of inequalities:

maximize
x,y

xTCy

subject to A1x ≤ b1 x ≥ 0

A2y ≤ b2 y ≥ 0

(2)

The latter formulation can be easily transformed into the normal form using standard
transformations of linear programs (Vanderbei, 2001). In particular, we can introduce slack

1. It is possible to define the dimensionality in terms of x, or the minimum of dimensions of x and y. The
issue is discussed in Appendix B.
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variables w, z to obtain the following identical bilinear program in the normal form:

maximize
w,x,y,z

xTCy

subject to A1x− w = b1

A2y − z = b2

w, x, y, z ≥ 0

(3)

We use the following matrix and block matrix notation in the paper. Matrices are
denoted by square brackets, with columns separated by commas and rows separated by
semicolons. Columns have precedence over rows. For example, the notation [A,B;C,D]

corresponds to the matrix
(
A B
C D

)
.

As we show later, the presence of the variables w, z in the objective function may prevent
a crucial function from being convex. Since this has an unfavorable impact on the properties
of the bilinear program, we introduce a compact form of the problem.

Definition 2. We say that the bilinear program in Eq. (1) is in a compact form when s1

and s2 are zero vectors. It is in a semi-compact form if s2 is a zero vector.

The compactness requirement is not limiting because any bilinear program in the form
shown in Eq. (1) can be expressed in a semi-compact form as follows:

maximize
w,x,y,z,x̂,ŷ

sT1w + rT1 x+
(
xT x̂

)(C 0
0 1

)(
y
ŷ

)
+ rT2 y

subject to A1x+B1w = b1 A2y +B2z = b2

x̂ = 1 ŷ = sT2 z

w, x, y, z ≥ 0

(4)

Clearly, feasible solutions of Eq. (1) and Eq. (4) have the same objective value when ŷ is set
appropriately. Notice that the dimensionality of the bilinear term in the objective function
increases by 1 for both x and y. Hence, this transformation increases the dimensionality of
the program by 1.

The rest of this section describes several classes of multiagent planning problems that can
be formulated as bilinear programs. Starting with observation and transition independent
DEC-MDPs, we extend the formulation to allow a different objective function (maximizing
average reward over an infinite horizon), to handle interdependent observations, and to find
Nash equilibria in competitive settings.

2.1 DEC-MDPs

As mentioned previously, any transition-independent and observation-independent DEC-
MDP (Becker et al., 2004) may be formulated as a bilinear program. Intuitively, a DEC-
MDP is transition independent when no agent can influence the other agents’ transitions. A
DEC-MDP is observation independent when no agent can observe the states of other agents.
These assumptions are crucial since they ensure a lower complexity of the problem (Becker
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et al., 2004). In the remainder of the paper, we use simply the term DEC-MDP to refer to
transition and observation independent DEC-MDP.

The DEC-MDP model has proved useful in several multiagent planning domains. One
example that we use is the Mars rover planning problem (Bresina, Golden, Smith, & Wash-
ington, 1999), first formulated as a DEC-MDP by Becker et al. (2003). This domain
involves two autonomous rovers that visit several sites in a given order and may decide to
perform certain scientific experiments at each site. The overall activity must be completed
within a given time limit. The uncertainty about the duration of each experiment is mod-
eled by a given discrete distribution. While the rovers operate independently and receive
local rewards for each completed experiment, the global reward function also depends on
some experiments completed by both rovers. The interaction between the rovers is thus
limited to a relatively small number of such overlapping tasks. We return to this problem
and describe it in more detail in Section 6.

A DEC-MDP problem is composed of two MDPs with state-sets S1, S2 and action sets
A1, A2. The functions r1 and r2 define local rewards for action-state pairs. The initial
state distributions are α1 and α2. The MDPs are coupled through a global reward function
defined by the matrix R. Each entry R(i, j) represents the joint reward for the state-action
i by one agent and j by the other. Our definition of a DEC-MDP is based on the work of
Becker et al. (2004), with some modifications that we discuss below.

Definition 3. A two-agent transition and observation independent DEC-MDP with ex-
tended reward structure is defined by a tuple 〈S,F , α,A, P,R〉:
• S = (S1,S2) is the factored set of world states
• F = (F1 ⊆ S1,F2 ⊆ S2) is the factored set of terminal states.
• α = (α1, α2) where αi : Si 7→ [0, 1] are the initial state distribution functions
• A = (A1,A2) is the factored set of actions
• P = (P1, P2), Pi : Si × Ai × Si 7→ [0, 1] are the transition functions. Let a ∈ Ai

be an action, then P ai : Si × Si 7→ [0, 1] is a stochastic transition matrix such that
Pi(s, a, s′) = P ai (s, s′) is the probability of a transition from state s ∈ Si to state
s′ ∈ Si of agent i, assuming it takes action a. The transitions from the final states
have 0 probability; that is Pi(s, a, s′) = 0 if s ∈ Fi, s′ ∈ Si, and a ∈ Ai.
• R = (r1, r2, R) where ri : Si ×Ai 7→ R are the local reward functions and
R : (S1 × A1) × (S2 × A2) 7→ R is the global reward function. Local rewards ri are
represented as vectors, and R is a matrix with (s1, a1) as rows and (s2, a2) as columns.

Definition 3 differs from the original definition of transition and observation indepen-
dent DEC-MDP (Becker et al. 2004, Definition 1) in two ways. The modifications allow
us to explicitly capture assumptions that are implicit in previous work. First, the individ-
ual MDPs in our model are formulated as stochastic shortest-path problems (Bertsekas &
Tsitsiklis, 1996). That is, there is no explicit time horizon, but instead some states are
terminal. The process stops upon reaching a terminal state. The objective is to maximize
the cumulative reward received before reaching the terminal states.

The second modification of the original definition is that Definition 3 generalizes the
reward structure of the DEC-MDP formulation, using the extended reward structure. The
joint rewards in the original DEC-MDP are defined only for the joint states (s1 ∈ S1, s

2 ∈ S2)
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Figure 1: An MDP and its stochastic shortest path version with time horizon 3. The dotted
circles are terminal states.

visited by both agents simultaneously. That is, if agent 1 visits states s1
1, s

1
2 and agent 2

visits states s2
1, s

2
2, then the reward can only be defined for joint states (s1

1, s
2
1) and (s1

2, s
2
2).

However, our DEC-MDP formulation with extended reward structure also allows the reward
to depend on (s1

1, s
2
2) and (s1

2, s
2
1), even when they are not visited simultaneously. As a result,

the global reward may depend on the history, not only on the current state. Note that this
reward structure is more general than what is commonly used in DEC-POMDPs.

We prefer the more general definition because it has been already implicitly used in
previous work. In particular, this extended reward structure arises from introducing the
primitive and compound events in the work of Becker et al. (2004). This reward structure
is necessary to capture the characteristics of the Mars rover benchmark. Interestingly,
this extension does not complicate our proposed solution methods in any way. Note that
the stochastic shortest path formulation (right side of Figure 1) inherently eliminates any
loops because time always advances when an action is taken. Therefore, every state in that
representation may be visited at most once. This property is commonly used when an MDP
is formulated as a linear program (Puterman, 2005).

The solution of a DEC-MDP is a deterministic stationary policy π = (π1, π2), where
πi : Si 7→ Ai is the standard MDP policy (Puterman, 2005) for agent i. In particular, πi(si)
represents the action taken by agent i in state si. To define the bilinear program, we use
variables x(s1, a1) to denote the probability that agent 1 visits state s1 and takes action a1

and y(s2, a2) to denote the same for agent 2. These are the standard dual variables in MDP
formulation. Given a solution in terms of x for agent 1, the policy is calculated for s ∈ S1

as follows, breaking ties arbitrarily.

π1(s) = arg max
a∈A1

x(s, a)

The policy π2 is similarly calculated from y. The correctness of the policy calculation follows
from the existence of an optimal policy that is deterministic and depends only on the local
states of that agent (Becker et al., 2004).

The objective in DEC-MDPs in terms of x and y is then to maximize:∑
s1∈S1
a1∈A1

r1(s1, a1)x(s1, a1) +
∑
s1∈S1
a1∈A1

∑
s2∈S2
a2∈A2

R(s1, a1, s2, a2)x(s1, a1)y(s2, a2) +
∑
s2∈S2
a2∈A2

r2(s2, a2)y(s2, a2).

The stochastic shortest path representation is more general because any finite-horizon MDP
can be represented as such by keeping track of time as part of the state, as illustrated
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Figure 2: A sample DEC-MDP.

in Figure 1. This modification allows us to apply the model directly to the Mars rover
benchmark problem. Actions in the Mars rover problem may have different durations,
while all actions in finite-horizon MDPs take the same amount of time.

A DEC-MDP problem with an extended reward structure can be formulated as a bilin-
ear mathematical program as follows. Vector variables x and y represent the state-action
probabilities for each agent, as used in the dual linear formulation of MDPs. Given the tran-
sition and observation independence, the feasible regions may be defined by linear equalities
A1x = α1 and x ≥ 0, and A2y = α2 and y ≥ 0. The matrices A1 and A2 are the same
as for the dual formulation of total expected reward MDPs (Puterman, 2005), representing
the following equalities for agent i:

∑
a′∈Ai

x(s′, a′)−
∑
s∈Si

∑
a∈Ai

Pi(s, a, s′)x(s, a) = αi(s′),

for every s′ ∈ Si. As described above, variables x(s, a) represent the probabilities of visiting
the state s and taking action a by the appropriate agent during plan execution. Note that
for agent 2, the variables are y(s, a) rather than x(s, a). Intuitively, these equalities ensure
that the probability of entering each non-terminal state, through either the initial step or
from other states, is the same as the probability of leaving the state. The bilinear problem
is then formulated as follows:

maximize
x,y

rT1 x+ xTRy + rT2 y

subject to A1x = α1 x ≥ 0

A2y = α2 y ≥ 0

(5)

In this formulation, we treat the initial state distributions αi as vectors, based on a fixed
ordering of the states. The following simple example illustrates the formulation.

Example 4. Consider a DEC-MDP with two agents, depicted in Figure 2. The transitions
in this problem are deterministic, and thus all the branches represent actions ai, ordered for
each state from left to right. In some states, only one action is available. The shared reward
r1, denoted by a dotted line, is received when both agents visit the state. The local rewards
are denoted by the numbers above next to the states. The terminal states are omitted. The
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agents start in states s1
1 and s2

1 respectively. The bilinear formulation of this problem is:

maximize x(s1
4, a1) ∗ r1 ∗ y(s2

4, a1)
subject to x(s1

1, a1) = 1 y(s2
1, a1) + y(s2

1, a2) = 1
x(s1

2, a1) + x(s1
2, a2)− x(s1

1, a1) = 0 y(s2
2, a1)− y(s2

1, a1) = 0
x(s1

3, a1)− x(s1
2, a1) = 0 y(s2

3, a1)− y(s2
2, a1) = 0

x(s1
4, a1)− x(s1

2, a2) = 0 y(s2
4, a1)− y(s2

2, a1) = 0
y(s2

5, a1)− y(s2
3, a1) = 0

While the results in this paper focus on two-agent problems, our approach can be ex-
tended to DEC-MDPs with more than two agents in two ways. The first approach requires
that each component of the global reward depends on at most two agents. The DEC-MDP
then may be viewed as a graph with vertices representing agents and edges representing
the immediate interactions or dependencies. To formulate the problem as a bilinear pro-
gram, this graph must be bipartite. Interestingly, this class of problems has been previously
formulated (Kim et al., 2006). Let G1 and G2 be the indices of the agents in the two
partitions of the bipartite graph. Then the problem can be formulated as follows:

maximize
x,y

∑
i∈G1,j∈G2

rTi xi + xT
i Rijyj + rTj yj

subject to Aixi = α1 xi ≥ 0 i ∈ G1

Ajyj = α2 yj ≥ 0 j ∈ G2

(6)

Here, Rij denotes the global reward for interactions between agents i and j. This pro-
gram is bilinear and separable because the constraints on the variables in G1 and G2 are
independent.

The second approach to generalize the framework is to represent the DEC-MDP as a
multilinear program. In that case, no restrictions on the reward structure are necessary.
An algorithm to solve, say a trilinear program, could be almost identical to the algorithm
we propose, except that the best response would be calculated using bilinear, not linear
programs. However, the scalability of this approach to more than a few agents is doubtful.

2.2 Average-Reward Infinite-Horizon DEC-MDPs

The previous formulation deals with finite-horizon DEC-MDPs. An average-reward prob-
lem may also be formulated as a bilinear program (Petrik & Zilberstein, 2007b). This
is particularly useful for infinite-horizon DEC-MDPs. For example, consider the infinite-
horizon version of the Multiple Access Broadcast Channel (MABC) (Rosberg, 1983; Ooi &
Wornell, 1996). In this problem, which has been used widely in recent studies of decentral-
ized decision making, two communication devices share a single channel, and they need to
periodically transmit some data. However, the channel can transmit only a single message
at a time. When both agents send messages at the same time, this leads to a collision, and
the transmission fails. The memory of the devices is limited, thus they need to send the
messages sooner rather than later. We adapt the model from the work of Rosberg (1983),
which is particularly suitable because it assumes no sharing of local information among the
devices.
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The definition of average-reward two-agent transition and observation independent DEC-
MDP is the same as Definition 3, with the exception of the terminal states, policy, and ob-
jective. There are no terminal states in average-reward DEC-MDPs, and the policy (π1, π2)
may be stochastic. That is, πi(s, a) 7→ [0, 1] is the probability of agent i taking an action
a in state s. The objective is to find a stationary infinite-horizon policy π that maximizes
the average reward, or gain, defined as follows.

Definition 5. Let π = (π1, π2) be a stochastic policy, and Xt and Yt be random variables
that represent the probability distributions over the state-action pairs at time t of the two
agents respectively according to π. The gain G of the policy π is then defined for states
s1 ∈ S1 and s2 ∈ S2 as:

G(s1, s2) = lim
N→∞

1
N

E(s1,π1(s1)),(s2,π2(s2))

[
N−1∑
t=0

r1(Xt) +R(Xt, Yt) + r2(Yt)

]
,

where πi(si) is the distribution over the actions in state si. Note that the expectation is
with respect to the initial states and action distributions (s1, π1(s1)), (s2, π2(s2)).

The actual gain of a policy depends on the agents’ initial state distributions α1, α2

and may be expressed as αT
1Gα2, with G represented as a matrix. Puterman (2005), for

example, provides a more detailed discussion of the definition and meaning of policy gain.
To simplify the bilinear formulation of the average-reward DEC-MDP, we assume that

r1 = 0 and r2 = 0. The bilinear program follows.

maximize
p1,p2,q1,q2

τ(p1, p2, q1, q2) = pT
1Rp2

subject to p1, p2 ≥ 0
∀s′ ∈ S1

∑
a∈A1

p1(s′, a)−
∑

s∈S1,a∈A1

p1(s, a)P a1
(
s, s′

)
= 0

∀s′ ∈ S1

∑
a∈A1

p1(s′, a) +
∑
a∈A1

q1(s′, a)−
∑

s∈S1,a∈A1

q1(s, a)P a1
(
s, s′

)
= α1(s′)

∀s′ ∈ S2

∑
a∈A2

p2(s′, a)−
∑

s∈S2,a∈A2

p2(s, a)P a2
(
s, s′

)
= 0

∀s′ ∈ S2

∑
a∈A2

p2(s′, a) +
∑
a∈A2

q2(s′, a)−
∑

s∈S2,a∈A2

q2(s, a)P a2
(
s, s′

)
= α2(s′)

(7)

The variables in the program come from the dual formulation of the average-reward MDP
linear program (Puterman, 2005). The state sets of the MDPs is divided into recurrent
and transient states. The recurrent states are expected to be visited infinitely many times,
while the transient states are expected to be visited finitely many times. Variables p1 and
p2 represent the limiting distributions of each MDP, which is non-zero for all recurrent
states. The (possibly stochastic) policy πi of agent i is defined in the recurrent states by
the probability of taking action a ∈ Ai in state s ∈ Si:

πi(s, a) =
pi(s, a)∑

a′∈Ai
pi(s, a′)

.
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r2 r3 r4 r5 r1 r7 r8

a24a23a24a23a22a21a22a21

b11

a11 a12

b12b11
b12

r1

Figure 3: A tree form of a policy for a DEC-POMDP or an extensive game. The dotted
ellipses denote the information sets.

The variables pi are 0 in transient states. The policy in the transient states is calculated
from variables qi as:

πi(s, a) =
qi(s, a)∑

a′∈Ai
qi(s, a′)

.

The correctness of the constraints follows from the dual formulation of optimal average
reward (Puterman 2005, Equation 9.3.4). Petrik and Zilberstein (2007b) provide further
details of this formulation.

2.3 General DEC-POMDPs and Extensive Games

The general DEC-POMDP problem and extensive-form games with two agents, or players,
can also be formulated as bilinear programs. However, the constraints may not be separable
because actions of one agent influence the other agent. The approach in this case may be
similar to linear complementarity problem formulation of extensive games (Koller, Megiddo,
& von Stengel, 1994), and integer linear program formulation of DEC-POMDPs (Aras
& Charpillet, 2007). The approach we develop is closely related to event-driven DEC-
POMDPs (Becker et al., 2004), but it is in general more efficient. Nevertheless, the size of
the bilinear program is exponential in the size of the DEC-POMDP. This can be expected
since solving DEC-POMDPs is NEXP-complete (Bernstein et al., 2000), while solving
bilinear programs is NP-complete (Mangasarian, 1995). Because the general formulation in
this case is somewhat cumbersome, we only illustrate it using the following simple example.
Aras (2008) provides the details of a similar construction.

Example 6. Consider the problem depicted in Figure 3, assuming that the agents are
cooperative. The actions of the other agent are not observable, as denoted by the information
sets. This approach can be generalized to any problem with any observable sets as long as
the perfect recall condition is satisfied. Agents satisfy the perfect recall condition when
they remember the set of actions taken in the prior moves (Osborne & Rubinstein, 1994).
Rewards are only collected in the leaf-nodes in this case. The variables on the edges represent
the probability of taking the action. Here, variables a denote the actions of one agent, and
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variables b of the other. The total common reward received in the end is:

r = a11b11a21r1 + a11b11a22r2 + a11b12a21r3 + a11b12a22r4 +
a12b11a23r5 + a12b11a24r6 + a12b12a23r7 + a12b12a24r8.

The constraints in this problem are of the following form: a11 + a12 = 1.

Any DEC-POMDP problem can be represented using the approach used above. It is
also straightforward to extend the approach to problems with rewards in every node. How-
ever, the above formulation is clearly not bilinear. To apply our algorithm to this class
of problems, we need to reformulate the problem in a bilinear form. This can be easily
accomplished in a way similar to the construction of the dual linear program for an MDP.
Namely, we introduce variables:

c11 = a11

c12 = a12

c21 = a11a21

c22 = a11a22

and so on for every set of variables on any path to a leaf node. Then, the objective may be
reformulated as follows:

r = c21b11r1 + c22b11r2 + c23b12r3 + c24b12r4 +
c25b11r5 + c26b11r6 + c27b12r7 + c28b12r8.

Variables bij are replaced in the same fashion. This objective function is clearly bilinear.
The constraints may be reformulated as follows. The constraint a21 + a22 = 1 can be
multiplied by a11 and then replaced by c21 + c22 = c11, and so on. That is, the variables in
each level have to sum to the variable that is their least common parent in the level above
for the same agent.

2.4 General Two-Player Games

In addition to cooperative problems, some competitive problems with 2 players may be
formulated as bilinear programs. It is known that the problem of finding an equilibrium for
a bi-matrix game may be formulated as a linear complementarity problem (Cottle, Pang,
& Stone, 1992). It has also been shown that a linear complementarity problem may be
formulated as a bilinear problem (Mangasarian, 1995). However, a direct application of
these two reductions results in a complex problem with a large dimensionality. Below, we
demonstrate how a general game can be directly formulated as a bilinear program. There
are many ways to formulate a game, thus we take a very general approach. We simply
assume that each agent optimizes a linear program, as follows.

maximize
x

d1(x) = rT1 x+ xTC1y

subject to A1x = b1

x ≥ 0

(8)

maximize
y

d2(y) = rT2 y + xTC2y

subject to A2y = b2

y ≥ 0

(9)
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In Eq. (8), the variable y is considered to be a constant and similarly in Eq. (9) the
variable x is considered to be a constant. For normal form games, the constraint matrices
A1 and A2 are simply rows of ones, and b1 = b2 = 1. For competitive DEC-MDPs, the
constraint matrices A1 and A2 are the same as in Section 2.1. Extensive games may be
formulated similarly to DEC-POMDPs, as described in Section 2.3.

The game specified by linear programs Eq. (8) and Eq. (9) may be formulated as a
bilinear program as follows. First, define the reward vectors for each agent, given a policy
of the other agent.

q1(y) = r1 + C1y

q2(x) = r2 + CT
2 x.

These values are unrelated to those of Eq. (7). The complementary slackness values (Van-
derbei, 2001) for the linear programs Eq. (8) and Eq. (9) are:

k1(x, y, λ1) =
(
q1(y)T − λT

1A1

)
x

k2(x, y, λ2) =
(
q2(x)T − λT

2A2

)
y,

where λ1 and λ2 are the dual variables of the corresponding linear programs. For any
primal feasible x and y, and dual feasible λ1 and λ2, we have that k1(x, y, λ1) ≥ 0 and
k2(x, y, λ2) ≥ 0. The equality is attained if and only if x and y are optimal. This can
be used to write the following optimization problem, in which we implicitly assume that
x,y,λ1,λ2 are feasible in the appropriate primal and dual linear programs:

0 ≤ min
x,y,λ1,λ2

k1(x, y, λ1) + k2(x, y, λ2)

= min
x,y,λ1,λ2

(q1(y)T − λT
1A1)x+ (q2(x)T − λT

2A2)y

= min
x,y,λ1,λ2

((r1 + C1y)T − λT
1A1)x+ ((r2 + CT

2 x)T − λT
2A2)y

= min
x,y,λ1,λ2

rT1 x+ rT2 y + xT(C1 + C2)y − xTAT
1 λ1 − yTAT

2 λ2

= min
x,y,λ1,λ2

rT1 x+ rT2 y + xT(C1 + C2)y − bT1 λ1 − bT2 λ2.

Therefore, any feasible x and y that set the right hand side to 0 solve both linear programs
in Eq. (8) and Eq. (9) optimally. Adding the primal and dual feasibility conditions to the
above, we get the following bilinear program:

minimize
x,y,λ1,λ2

rT1 x+ rT2 y + xT(C1 + C2)y − bT1 λ1 − bT2 λ2

subject to A1x = b1 A2y = b2

r1 + C1y −AT
1 λ1 ≤ 0

r2 + CT
2 x−AT

2 λ2 ≤ 0

x ≥ 0 y ≥ 0

(10)
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Algorithm 1: IterativeBestResponse(B)
x0, w0 ← rand ;1

i← 1 ;2

while yi−1 6= yi or xi−1 6= xi do3

(yi, zi)← arg maxy,z f(wi−1, xi−1, y, z) ;4

(xi, wi)← arg maxx,w f(w, x, yi, zi) ;5

i← i+ 16

return f(wi, xi, yi, zi)7

The optimal solution of Eq. (10) is 0 and it corresponds to a Nash equilibrium. This
is because both the primal variables x, y and dual variables λ1, λ2 are feasible and the
complementary slackness condition is satisfied. The open question in this example are the
interpretation of an approximate result and a formulation that would select the equilibrium.
It is not clear yet whether it is possible to formulate the program so that the optimal solution
will be a Nash equilibrium that maximizes a certain criterion. The approximate solutions
of the program probably correspond to ε-Nash equilibria, but this remain an open question.

The algorithm in this case also relies on the number of shared rewards being small
compared to the size of the problem. But even if this is not the case, it is often possible
that the number of shared rewards may be automatically reduced as described in Section 4.
In fact, it is easy to show that a zero-sum normal form game is automatically reduced to
two uncoupled linear programs. This follows from the dimensionality reduction procedure
in Section 4.

3. Solving Bilinear Programs

One simple method often used for solving bilinear programs is the iterative procedure shown
in Algorithm 1. The parameter B represents the bilinear program. While the algorithm
often performs well in practice, it tends to converge to a suboptimal solution (Mangasarian,
1995). When applied to DEC-MDPs, this algorithm is essentially identical to JESP (Nair,
Tambe, Yokoo, Pynadath, & Marsella, 2003)–one of the early solution methods. In the
following, we use f(w, x, y, z) to denote the objective value of Eq. (1).

The rest of this section presents a new anytime algorithm for solving bilinear programs.
The goal of the algorithm to is to produce a good solution quickly and then improve the
solution in the remaining time. Along with each approximate solution, the maximal ap-
proximation bound with respect to the optimal solution is provided. As we show below, our
algorithm can benefit from results produced by suboptimal algorithms, such as Algorithm 1,
to quickly determine tight approximation bounds.

3.1 The Successive Approximation Algorithm

We begin with an overview of a successive approximation algorithm for bilinear problems
that takes advantage of a low number of interactions between the agents. It is particularly
suitable when the input problem is large in comparison to its dimensionality, as defined in
Section 2. We address the issue of dimensionality reduction in Section 4.
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We begin with a simple intuitive explanation of the algorithm, and then show how it
can be formalized. The bilinear program can be seen as an optimization game played by
two agents, in which the first agent sets the variables w, x and the second one sets the
variables y, z. This is a general observation that applies to any bilinear program. In any
practical application, the feasible sets for the two sets of variables may be too large to
explore exhaustively. In fact, when this method is applied to DEC-MDPs, these sets are
infinite and continuous. The basic idea of the algorithm is to first identify the set of best
responses of one of the agents, say agent 1, to some policy of the other agent. This is
simple because once the variables of agent 2 are fixed, the program becomes linear, which
is relatively easy to solve. Once the set of best-response policies of agent 1 is identified,
assuming it is of a reasonable size, it is possible to calculate the best response of agent 2.

This general approach is also used by the coverage set algorithm (Becker et al., 2004).
One distinction is that the representation used in CSA applies only to DEC-MDPs, while
our formulation applies to bilinear programs–a more general representation. The main
distinction between our algorithm and CSA is the way in which the variables y, z are chosen.
In CSA, the values y, z are calculated in a way that simply guarantees termination in
finite time. We, on the other hand, choose values y, z greedily so as to minimize the
approximation bound on the optimal solution. This is possible because we establish bounds
on the optimality of the solution throughout the calculation. As a result, our algorithm
converges more rapidly and may be terminated at any time with a guaranteed performance
bound. Unlike the earlier version of the algorithm (Petrik & Zilberstein, 2007a), the version
described in this paper calculates the best response using only a subset of the values of y, z.
As we show, it is possible to identify regions of y, z in which it is impossible to improve the
current best solution and exclude these regions from consideration.

We now formalize the ideas described above. To simplify the notation, we define feasible
sets as follows:

X = {(x,w) A1x+B1w = b1}
Y = {(y, z) A2y +B2z = b2}.

We use y ∈ Y to denote that there exists z such that (y, z) ∈ Y . In addition, we assume that
the problem is in a semi-compact form. This is reasonable because any bilinear program
may be converted to semi-compact form with an increase in dimensionality of one, as we
have shown earlier.

Assumption 7. The sets X and Y are bounded, that is, they are contained in a ball of a
finite radius.

While Assumption 7 is limiting, coordination problems under uncertainty typically have
bounded feasible sets because the variables correspond to probabilities bounded to [0, 1].

Assumption 8. The bilinear program is in a semi-compact form.

The main idea of the algorithm is to compute a set X̃ ⊆ X that contains only those
elements that satisfy a necessary optimality condition. The set X̃ is formally defined as
follows:

X̃ ⊆
{

(x∗, w∗) ∃(y, z) ∈ Y f(w∗, x∗, y, z) = max
(x,w)∈X

f(w, x, y, z)
}
.
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As described above, this set may be seen as a set of best responses of one agent to the
variable settings of the other. The best responses are easy to calculate since the bilinear
program in Eq. (1) reduces to a linear program for fixed w, x or fixed y, z. In our algorithm,
we assume that X̃ is potentially a proper subset of all necessary optimality points and
focus on the approximation error of the optimal solution. Given the set X̃, the following
simplified problem is solved.

maximize
w,x,y,z

f(w, x, y, z)

subject to (x,w) ∈ X̃
A2y +B2z = b2

y, z ≥ 0

(11)

Unlike the original continuous set X, the reduced set X̃ is discrete and small. Thus the
elements of X̃ may be enumerated. For a fixed w and x, the bilinear program in Eq. (11)
reduces to a linear program.

To help compute the approximation bound and to guide the selection of elements for
X̃, we use the best-response function g(y), defined as follows:

g(y) = max
{w,x,z (x,w)∈X,(y,z)∈Y }

f(w, x, y, z) = max
{x,w (x,w)∈X}

f(w, x, y, 0),

with the second equality for semi-compact programs only and feasible y ∈ Y . Note that
g(y) is also defined for y /∈ Y , in which case the choice of z is arbitrary since it does
not influence the objective function. The best-response function is easy to calculate using
a linear program. The crucial property of the function g that we use to calculate the
approximation bound is its convexity. The following proposition holds because g(y) =
max{x,w (x,w)∈X} f(w, x, y, 0) is a maximum of a finite set of linear functions.

Proposition 9. The function g(y) is convex when the program is in a semi-compact form.

Proposition 9 relies heavily on the separability of Eq. (1), which means that the con-
straints on the variables on one side of the bilinear term are independent of the variables on
the other side. The separability ensures that w, x are valid solutions regardless of the values
of y, z. The semi-compactness of the program is necessary to establish convexity, as shown
in Example 23 in Appendix C. The example is constructed using the properties described
in the appendix, which show that f(w, x, y, z) may be expressed as a sum of a convex and
a concave function.

We are now ready to describe Algorithm 2, which computes the set X̃ for a bilinear
problem B such that the approximation error is at most ε0. The algorithm iteratively adds
the best response (x,w) for a selected pivot point y into X̃. The pivot points are selected
hierarchically. At an iteration j, the algorithm keeps a set of polyhedra S1 . . . Sj which
represent the triangulation of the feasible space Y , which is possible based on Assumption 7.
For each polyhedron Si = (y1 . . . yn+1), the algorithm keeps a bound εi on the maximal
difference between the optimal solution on the polyhedron and the best solution found so
far. This error bound on a polyhedron Si is defined as:

εi = e(Si) = max
{w,x,y|(x,w)∈X,y∈Si}

f(w, x, y, 0)− max
{w,x,y|(x,w)∈X̃,y∈Si}

f(w, x, y, 0),
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Algorithm 2: BestResponseApprox(B, ε0) returns (w, x, y, z)
// Create the initial polyhedron S1.
S1 ← (y1 . . . yn+1), Y ⊆ S1 ;1

// Add best-responses for vertices of S1 to X̃

X̃ ← {arg max(x,w)∈X f(w, x, y1, 0), ..., arg max(x,w)∈X f(w, x, yn+1, 0)} ;2

// Calculate the error ε and pivot point φ of the initial polyhedron
(ε1, φ1)← PolyhedronError(S1) ; // Section 3.2,Section 3.33

// Initialize the number of polyhedra to 1
j ← 1 ;4

// Continue until reaching a predefined precision ε0
while maxi=1,...,j εi ≥ ε0 do5

// Find the polyhedron with the largest error
i← arg maxk=1,...,j εk ;6

// Select the pivot point of the polyhedron with the largest error
y ← φi ;7

// Add the best response to the pivot point y to the set X̃

X̃ ← X ∪ {arg max(x,w)∈X f(w, x, y, 0)} ;8

// Calculate errors and pivot points of the refined polyhedra
for k = 1, . . . , n+ 1 do9

j ← j + 1 ;10

// Replace the k-th vertex by the pivot point y
Sj ← (y, y1 . . . yk−1, yk+1, . . . yn+1) ;11

(εj , φj)← PolyhedronError(Sj) ; // Section 3.2,Section 3.312

// Take the smaller of the errors on the original and the refined
polyhedron. The error may not increase with the refinement,
although the bound may

εj ← min{εi, εj} ;13

// Set the error of the refined polyhedron to 0, since the region is
covered by the refinements

εi ← 0 ;14

(w, x, y, z)← arg max{w,x,y,z (x,w)∈X̃,(y,z)∈Y } f(w, x, y, 0) ;15

return (w, x, y, z) ;16

where X̃ represents the current, not final, set of best responses.
Next, a point y0 is selected as described below and n + 1 new polyhedra are created

by replacing one of the vertices by y0 to get: (y0, y2, . . .), (y1, y0, y3, . . .), . . . , (y1, . . . , yn, y0).
This is depicted for a 2-dimensional set Y in Figure 4. The old polyhedron is discarded
and the above procedure is then repeatedly applied to the polyhedron with the maximal
approximation error.

For the sake of clarity, the pseudo-code of Algorithm 2 is simplified and does not address
any efficiency issues. In practice, g(yi) could be cached, and the errors εi could be stored in
a prioritized heap or at least in a sorted array. In addition, a lower bound li and an upper
bound ui is calculated and stored for each polyhedron Si = (y1 . . . yn+1). The function e(Si)
calculates their maximal difference on the polyhedron Si and the point where it is attained.
The error bound εi on the polyhedron Si may not be tight, as we describe in Remark 13.
As a result, when the polyhedron Si is refined to n polyhedra S′1 . . . S

′
n with online error
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y1

y3

y2
y0

Figure 4: Refinement of a polyhedron in two dimensions with a pivot y0.

bounds ε′1 . . . ε
′
n, it is possible that for some k: ε′k > εi. Since S′1 . . . S

′
n ⊆ Si, the true error

on S′k is less than on Si and therefore ε′k may be set to εi.
Conceptually, the algorithm is similar to CSA, but there are some important differences.

The main difference is in the choice of the pivot point y0 and the bounds on g. CSA does not
keep any upper bound and it evaluates g(y) on all the intersection points of planes defined
by the current solutions in X̃. That guarantees that g(y) is eventually known precisely
(Becker et al., 2004). A similar approach was also taken for POMDPs (Cheng, 1988). The
upper bound on the number of intersection points in CSA is

( |X̃|
dimY

)
. The principal problem

is that the bound is exponential in the dimension of Y , and experiments do not show a
slower growth in typical problems. In contrast, we choose the pivot points to minimize
the approximation error. This is more selective and tends to more rapidly reduce the error
bound. In addition, the error at the pivot point may be used to determine the overall
error bound. The following proposition states the soundness of the triangulation, proved
in Appendix A. The correctness of the triangulation establishes that in each iteration the
approximation error over Y is equivalent to the maximum of the approximation errors over
the current polyhedra S1 . . . Sj .

Proposition 10. In the proposed triangulation, the sub-polyhedra do not overlap and they
cover the whole feasible set Y , given that the pivot point is in the interior of S.

3.2 Online Error Bound

The selection of the pivot point plays a key role in the performance of the algorithm, in both
calculating the error bound and the speed of convergence to the optimal solution. In this
section we show exactly how we use the triangulation in the algorithm to calculate an error
bound. To compute the approximation bound, we define the approximate best-response
function g̃(y) as:

g̃(y) = max
{x,w (x,w)∈X̃}

f(w, x, y, 0).

Notice that z is not considered in this expression, since we assume that the bilinear pro-
gram is in the semi-compact form. The value of the best approximate solution during the
execution of the algorithm is:

max
{w,x,y,z (x,w)∈X̃,y∈Y }

f(w, x, y, 0) = max
y∈Y

g̃(y).
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This value can be calculated at runtime when each new element of X̃ is added. Then the
maximal approximation error between the current solution and the optimal one may be
calculated from the approximation error of the best-response function g(·), as stated by the
following proposition.

Proposition 11. Consider a bilinear program in a semi-compact form. Then let w̃, x̃, ỹ
be an optimal solution of Eq. (11) and let w∗, x∗, y∗ be an optimal solution of Eq. (1). The
approximation error is then bounded by:

f(w∗, x∗, y∗, 0)− f(w̃, x̃, ỹ, 0) ≤ max
y∈Y

(g(y)− g̃(y)) .

Proof.

f(w∗, x∗, y∗, 0)− f(w̃, x̃, ỹ, 0) = max
y∈Y

g(y)−max
y∈Y

g̃(y) ≤ max
y∈Y

g(y)− g̃(y)

Now, the approximation error is maxy∈Y g(y)− g̃(y), which is bounded by the difference
between an upper bound and a lower bound on g(y). Clearly, g̃(y) is a lower bound on
g(y). Given points in which g̃(y) is the same as the best-response function g(y), we can use
Jensen’s inequality to obtain the upper bound. This is summarized by the following lemma.

Lemma 12. Let yi ∈ Y for i = 1, . . . , n+ 1 such that g̃(yi) = g(yi). Then
g
(∑n+1

i=1 ciyi

)
≤
∑n+1

i=1 cig(yi) when
∑n+1

i=1 ci = 1 and ci ≥ 0 for all i.

The actual implementation of the bound relies on the choice of the pivot points. Next
we describe the maximal error calculation on a single polyhedron defined by S = (y1 . . . yn).
Let matrix T have yi as columns, and let L = {x1 . . . xn+1} be the set of the best responses
for its vertices. The matrix T is used to convert any y in absolute coordinates to a relative
representation t that is a convex combination of the vertices. This is defined formally as
follows:

y = Tt =

 . . .
y1 y2 . . .

. . .

 t

1 = 1Tt

0 ≤ t

where the yi’s are column vectors.
We can represent a lower bound l(y) for g̃(y) and an upper bound u(y) for g(y) as:

l(y) = max
x∈L

rTx+ xTCy

u(y) = [g(y1), g(y2), . . .]Tt = [g(y1), g(y2), . . .]T
(
T
1T

)−1(
y
1

)
,

The upper bound correctness follows from Lemma 12. Notice that u(y) is a linear function,
which enables us to use a linear program to determine the maximal-error point.
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Algorithm 3: PolyhedronError(B, S)
P ← one of Eq. (12), or (13), or (14), or (20) ;1

t← the optimal solution of P ;2

ε← the optimal objective value of P ;3

// Coordinates t are relative to the vertices of S, convert them to absolute
values in Y

φ← Tt ;4

return (ε, φ) ;5

Remark 13. Notice that we use L instead of X̃ in calculating l(y). Using all of X̃ would
lead to a tighter bound, as it is easy to show in three-dimensional examples. However, this
also would substantially increase the computational complexity.

Now, the error on a polyhedron S may be expressed as:

e(S) ≤ max
y∈S

u(y)− l(y) = max
y∈S

u(y)−max
x∈L

rTx+ xTCy

= max
y∈S

min
x∈L

u(y)− rTx− xTCy.

We also have
y ∈ S ⇔

(
y = Tt ∧ t ≥ 0 ∧ 1Tt = 1

)
.

As a result, the point with the maximal error bound may be determined using the following
linear program in terms of variables t, ε:

maximize
t,ε

ε

subject to ε ≤ u(Tt)− rTx− xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

(12)

Here x is not a variable. The formulation is correct because all feasible solutions are
bounded below the maximal error and any maximal-error solution is feasible.

Proposition 14. The optimal solution of Eq. (12) is equivalent to maxy∈S |u(y)− l(y)|.

We thus select the next pivot point to greedily minimize the error. The maximal differ-
ence is actually achieved in points where some of the planes meet, as Becker et al. (2004)
have suggested. However, checking these intersections is very similar to running the simplex
algorithm. In general, the simplex algorithm is preferable to interior point methods for this
program because of its small size (Vanderbei, 2001).

Algorithm 3 shows a general way to calculate the maximal error and the pivot point on
the polyhedron S. This algorithm may use the basic formulation in Eq. (12), or the more
advanced formulations in Eqs. (13), (14), and (20) defined in Section 3.3.

In the following section, we describe a more refined pivot point selection method that
can in some cases dramatically improve the performance.
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Figure 5: The reduced set Yh that needs to be considered for pivot point selection.

3.3 Advanced Pivot Point Selection

As described above, the pivot points are chosen greedily to both determine the maximal
error in each polyhedron and to minimize the approximation error. The basic approach
described in Section 3.1 may be refined, because the goal is not to approximate the function
g(y) with the least error, but to find the optimal solution. Intuitively, we can ignore those
regions of Y that will not guarantee any improvement of the current solution, as illustrated
in Figure 5. As we show below, the search for the maximal error point could be limited to
this region as well.

We first define a set Yh ⊆ Y that we will search for the maximal error, given that the
optimal solution f∗ ≥ h.

Yh = {y g(y) ≥ h, y ∈ Y }.

The next proposition states that the maximal error needs to be calculated only in a superset
of Yh.

Proposition 15. Let w̃, x̃, ỹ, z̃ be the approximate optimal solution and w∗, x∗, y∗, z∗ be the
optimal solution. Also let f(w∗, x∗, y∗, z∗) ≥ h and assume some Ỹh ⊇ Yh. The approxima-
tion error is then bounded by:

f(w∗, x∗, y∗, z∗)− f(w̃, x̃, ỹ, z̃) ≤ max
y∈Ỹh

g(y)− g̃(y).

Proof. First, f(w∗, x∗, y∗, z∗) = g(y∗) ≥ h and thus y∗ ∈ Yh. Then:

f(w∗, x∗, y∗, z∗)− f(w̃, x̃, ỹ, z̃) = max
y∈Yh

g(y)−max
y∈Y

g̃(y)

≤ max
y∈Yh

g(y)− g̃(y)

≤ max
y∈Ỹh

g(y)− g̃(y)

Proposition 15 indicates that the point with the maximal error needs to be selected only
from the set Yh. The question is how to easily identify Yh. Because the set is not convex in
general, a tight approximation of this set needs to be found. In particular, we use methods
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that approximate the intersection of a superset of Yh with the polyhedron that is being
refined, using the following methods:

1. Feasibility [Eq. (13)]: Require that pivot points are feasible in Y .
2. Linear bound [Eq. (14)]: Use the linear upper bound u(y) ≥ h.
3. Cutting plane [Eq. (20)]: Use the linear inequalities that define Y C

h , where
Y C
h = R|Y | \ Yh is the complement of Yh.

Any combination of these methods is also possible.

Feasibility The first method is the simplest, but also the least constraining. The linear
program to find the pivot point with the maximal error bound is as follows:

maximize
ε,t,y,z

ε

subject to ε ≤ u(Tt)− rTx+ xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

y = Tt

A2y +B2z = b2

y, z ≥ 0

(13)

This approach does not require that the bilinear program is in the semi-compact form.

Linear Bound The second method, using the linear bound, is also very simple to imple-
ment and compute, and it is more selective than just requiring feasibility. Let:

Ỹh = {y u(y) ≥ h} ⊇ {y g(y) ≥ h} = Yh.

This set is convex and thus does not need to be approximated. The linear program used to
find the pivot point with the maximal error bound is as follows:

maximize
ε,t

ε

subject to ε ≤ u(Tt)− rTx+ xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

u(Tt) ≥ h

(14)

The difference from Eq. (12) is the last constraint. This approach requires that the bilinear
program is in the semi-compact form to ensure that u(y) is a bound on the total return.

Cutting Plane The third method, using the cutting plane elimination, is the most com-
putationally intensive one, but also the most selective one. Using this approach requires
additional assumptions on the other parts of the algorithm, which we discuss below. The
method is based on the same principle as α-extensions in concave cuts (Horst & Tuy, 1996).
We start with the set Y C

h because it is convex and may be expressed as:(
max
w,x

sT1w + rT1 x+ yTCTx+ rT2 y

)
≤ h (15)

A1x+B1w = b1 (16)
w, x ≥ 0 (17)
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f2

f1

y2

y3

y1

Y − Yh

Figure 6: Approximating Yh using the cutting plane elimination method.

To use these inequalities in selecting the pivot point, we need to make them linear. But
there are two obstacles: Eq. (15) contains a bilinear term and is a maximization. Both
of these issues can be addressed by using the dual formulation of Eq. (15). The cor-
responding linear program and its dual for fixed y, ignoring constants h and rT2 y, are:

maximize
w,x

sT1w + rT1 x+ yTCTx

subject to A1x+B1w = b1

w, x ≥ 0

(18)
minimize

λ
bT1 λ

subject to AT
1 λ ≥ r1 + Cy

BT
1 λ ≥ s1

(19)

Using the dual formulation, Eq. (15) becomes:(
min
λ
bT1 λ+ rT2 y

)
≤ h

AT
1 λ ≥ r1 + Cy

BT
1 λ ≥ s1

Now, we use that for any function φ and any value θ the following holds:

min
x
φ(x) ≤ θ ⇔ (∃x) φ(x) ≤ θ.

Finally, this leads to the following set of inequalities.

rT2 y ≤ h− bT1 λ
Cy ≤ AT

1 λ− r1

s1 ≤ BT
1 λ

The above inequalities define the convex set Y C
h . Because its complement Yh is not

necessarily convex, we need to use its convex superset Ỹh on the given polyhedron. This
is done by projecting Y C

h , or its subset, onto the edges of each polyhedron as depicted in
Figure 6 and described in Algorithm 4. The algorithm returns a single constraint which
cuts off part of the set Y C

h . Notice that only the combination of the first n points fk is

256



A Bilinear Programming Approach for Multiagent Planning

Algorithm 4: PolyhedronCut({y1, . . . , yn+1}, h) returns constraint σTy ≤ τ
// Find vertices of the polyhedron {y1, . . . , yn+1} inside of Y C

h

I ← {yi yi ∈ Y C
h } ;1

// Find vertices of the polyhedron outside of Y C
h

O ← {yi yi ∈ Yh} ;2

// Find at least n points fk in which the edge of Yh intersects an edge of
the polyhedron

k ← 1 ;3

for i ∈ O do4

for j ∈ I do5

fk ← yj + maxβ{β β(yi − yj) ∈ (Y C
h )} ;6

k ← k + 1 ;7

if k ≥ n then8

break ;9

Find σ and τ , such that [f1, . . . , fn]σ = τ and 1Tσ = 1 ;10

// Determine the correct orientation of the constraint to have all y in Yh
feasible

if ∃yj ∈ O, and σTyj > τ then11

// Reverse the constraint if it points the wrong way
σ ← −σ ;12

τ ← −τ ;13

return σTy ≤ τ14

used. In general, there may be more than n points, and any subset of points fk of size n can
be used to define a new cutting plane that constraints Yh. This did not lead to significant
improvements in our experiments. The linear program to find the pivot point with the
cutting plane option is as follows:

maximize
ε,t,y

ε

subject to ε ≤ u(Tt)− rTx+ xTCTt ∀x ∈ L

1Tt = 1 t ≥ 0

y = Tt

σTy ≤ τ

(20)

Here, σ, and τ are obtained as a result of running Algorithm 4.
Note that this approach requires that the bilinear program is in the semi-compact form

to ensure that g(y) is convex. The following proposition states the correctness of this
procedure.

Proposition 16. The resulting polyhedron produced by Algorithm 4 is a superset of the
intersection of the polyhedron S with the complement of Yh.

Proof. The convexity of g(y) implies that Y C
h is also convex. Therefore, the intersection

Q = {y σTy ≥ τ} ∩ S
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is also convex. It is also a convex hull of points fk ∈ Y C
h . Therefore, from the convexity of

Y C
h , we have that Q ⊆ Y C

h , and therefore S −Q ⊇ Yh.

4. Dimensionality Reduction

Our experiments show that the efficiency of the algorithm depends heavily on the dimension-
ality of the matrix C in Eq. (1). In this section, we show the principles behind automatically
determining the necessary dimensionality of a given problem. Using the proposed proce-
dure, it is possible to identify weak interactions and eliminate them. Finally, the procedure
works for arbitrary bilinear programs and is a generalization of a method we have previously
introduced (Petrik & Zilberstein, 2007a).

The dimensionality is inherently part of the model, not the problem itself. There may be
equivalent models of a given problem with very different dimensionality. Thus, procedures
for reducing the dimensionality are not necessary when the modeler can create a model
with minimal dimensionality. However, this is nontrivial in many cases. In addition, some
dimensions may have little impact on the overall performance. To determine which ones
can be discarded, we need a measure of their contribution that can be computed efficiently.
We define these notions more formally later in this section.

We assume that the feasible sets have bounded L2 norms, and assume a general formula-
tion of the bilinear program, not necessarily in the semi-compact form. Given Assumption 7,
this can be achieved by scaling the constraints when the feasible region is bounded.

Assumption 17. For all x ∈ X and y ∈ Y , their norms satisfy ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1.

We discuss the implications of and problems with this assumption after presenting The-
orem 18. Intuitively, the dimensionality reduction removes those dimensions where g(y) is
constant, or almost constant. Interestingly, these dimensions may be recovered based on
the eigenvectors and eigenvalues of CTC. We use the eigenvectors of CTC instead of the
eigenvectors of C, because our analysis is based on L2 norm of x and y and thus of C.
The L2 norm ‖C‖2 is bounded by the largest eigenvalue of CTC. In addition, a symmetric
matrix is required to ensure that the eigenvectors are perpendicular and span the whole
space.

Given a problem represented using Eq. (1), let F be a matrix whose columns are all the
eigenvectors of CTC with eigenvalues greater than some λ̄. Let G be a matrix with all the
remaining eigenvectors as columns. Notice that together, the columns of the matrices span
the whole space and are real-valued, since CTC is a symmetric matrix. Assume without
loss of generality that the eigenvectors are unitary. The compressed version of the bilinear
program is then the following:

maximize
w,x,y1,y2,z

f̃(w, x, y1, y2, z) = rT1 x+ sT2w + xTCFy1 + rT2
(
F G

)(y1

y2

)
+ sT2 z

subject to A1x+B1w = b

A2

(
F G

)(y1

y2

)
+B2z = b2

w, x, y1, y2, z ≥ 0

(21)
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Notice that the program is missing the element xTCGy2, which would make its optimal
solutions identical to the optimal solutions of Eq. (1). We describe a more practical approach
to reducing the dimensionality in Appendix B. This approach is based on singular value
decomposition and may be directly applied to any bilinear program. The following theorem
quantifies the maximum error when using the compressed program.

Theorem 18. Let f∗ and f̃∗ be optimal solutions of Eq. (1) and Eq. (21) respectively. Then:

ε = |f∗ − f̃∗| ≤
√
λ̄.

Moreover, this is the maximal linear dimensionality reduction possible with this error without
considering the constraint structure.

Proof. We first show that indeed the error is at most
√
λ̄ and that any linearly compressed

problem with the given error has at least f dimensions. Using a mapping that preserves
the feasibility of both programs, the error is bounded by:

ε ≤
∣∣∣∣f (w, x, (F G

)(y1

y2

)
, z

)
− f̃

(
w, x, y1,

(
y2

z

))∣∣∣∣ =
∣∣∣xTCGy2

∣∣∣ .
Denote the feasible region of y2 as Y2. From the orthogonality of [F,G], we have that
‖y2‖2 ≤ 1 as follows:

y =
(
F G

)(y1

y2

)
(
FT

GT

)
y =

(
y1

y2

)
GTy = y2

‖GTy‖2 = ‖y2‖2

Then we have:

ε ≤ max
y2∈Y2

max
x∈X

∣∣∣xTCGy2

∣∣∣ ≤ max
y2∈Y2

‖CGy2‖2

≤ max
y2∈Y2

√
yT

2 G
TCTCGy2 ≤ max

y2∈Y2

√
yT

2 Ly2 ≤
√
λ̄

The result follows from Cauchy-Schwartz inequality, the fact that CTC is symmetric, and
Assumption 17. The matrix L denotes a diagonal matrix of eigenvalues corresponding to
eigenvectors of G.

Now, let H be an arbitrary matrix that satisfies the preceding error inequality for G.
Clearly, H ∩ F = ∅, otherwise ∃y, ‖y‖2 = 1, such that ‖CHy‖2 > ε. Therefore, we have
|H| ≤ n− |F | ≤ |G|, because |H|+ |F | = |Y |. Here | · | denotes the number of columns of
the matrix.

Alternatively, the bound can be proved by replacing the equality A1x + B1w = b1 by
‖x‖2 = 1. The bound can then be obtained by Lagrange necessary optimality conditions. In
these bounds we use L2-norm; an extension to a different norm is not straightforward. Note
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ŷ

Y

‖y‖2 ≤ 1

Figure 7: Approximation of the feasible set Y according to Assumption 17.

also that this dimensionality reduction technique ignores the constraint structure. When
the constraints have some special structure, it might be possible to obtain an even tighter
bound. As described in the next section, the dimensionality reduction technique generalizes
the reduction that Becker et al. (2004) used implicitly.

The result of Theorem 18 is based on an approximation of the feasible set Y by ‖y‖2 ≤ 1,
as Assumption 17 states. This approximation may be quite loose in some problems, which
may lead to a significant multiplicative overestimation of the bound in Theorem 18. For
example, consider the feasible set depicted in Figure 7. The bound may be achieved in a
point ŷ, which is far from the feasible region. In specific problems, a tighter bound could be
obtained by either appropriately scaling the constraints, or using a weighted L2 with a better
precision. We partially address this issue by considering the structure of the constraints.
To derive this, consider the following linear program and corresponding theorem:

maximize
x

cTx

subject to Ax = b x ≥ 0
(22)

Theorem 19. The optimal solution of Eq. (22) is the same as when the objective function
is modified to

cT(I −AT(AAT)−1A)x,

where I is the identity matrix.

Proof. The objective function is:

max
{x Ax=b, x≥0}

cTx =

= max
{x Ax=b, x≥0}

cT(I −AT(AAT)−1A)x+ cTAT(AAT)−1Ax

= cTAT(AAT)−1b+ max
{x Ax=b, x≥0}

cT(I −AT(AAT)−1A)x.

The first term may be ignored because it does not depend on the solution x.
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The following corollary shows how the above theorem can be used to strengthen the
dimensionality reduction bound. For example, in zero-sum games, this stronger dimension-
ality reduction splits the bilinear program into two linear programs.

Corollary 20. Assume that there are no variables w and z in Eq. (1). Let:

Qi = (I −AT
i (AiAT

i )−1Ai)), i ∈ {1, 2},

where Ai are defined in Eq. (1). Let C̃ be:

C̃ = Q1CQ2,

where C is the bilinear-term matrix from Eq. (1). Then the bilinear programs will have
identical optimal solutions with either C or C̃.

Proof. Using Theorem 19, we can modify the original objective function in Eq. (1) to:

f(x, y) = rT1 x+ xT(I −AT
1 (A1A

T
1 )−1A1))C(I −AT

2 (A2A
T
2 )−1A2))y + rT2 y.

For the sake of simplicity we ignore the variables w and z, which do not influence the bilinear
term. Because both (I − AT

i (AiAT
i )−1Ai) for i = 1, 2 are orthogonal projection matrices,

none of the eigenvalues in Theorem 18 will increase.

The dimensionality reduction presented in this section is related to the idea of com-
pound events used in CSA. Allen, Petrik, and Zilberstein (2008a, 2008b) provide a detailed
discussion of this issue.

5. Offline Bound

In this section we develop an approximation bound that depends only on the number of
points for which g(y) is evaluated and the structure of the problem. This kind of bound
is useful in practice because it provides performance guarantees without actually solving
the problem. In addition, the bound reveals which parameters of the problem influence the
algorithm’s performance. The bound is derived based on the maximal slope of g(y) and the
maximal distance among the points.

Theorem 21. To achieve an approximation error of at most ε, the number of points to be
evaluated in a regular grid with k points in every dimension must satisfy:

kn ≥
(
‖C‖2

√
n
n

ε

)
,

where n is the number of dimensions of Y .

The theorem follows using basic algebraic manipulations from the following lemma.

Lemma 22. Assume that for each y1 ∈ Y there exists y2 ∈ Y such that ‖y1− y2‖2 ≤ δ and
g̃(y2) = g(y2). Then the maximal approximation error is:

ε = max
y∈Y

g(y)− g̃(y) ≤ ‖C‖2δ.
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Proof. Let y1 be a point where the maximal error is attained. This point is in Y , because
this set is compact. Now, let y2 be the closest point to y1 in L2 norm. Let x1 and x2 be
the best responses for y1 and y2 respectively. From the definition of solution optimality we
can derive:

rT1 x1 + rT2 y2 + xT
1Cy2 ≤ rT1 x2 + rT2 y2 + xT

2Cy2

rT1 (x1 − x2) ≤ −(x1 − x2)TCy2.

The error now can be expressed, using the fact that ‖x1 − x2‖2 ≤ 1, as:

ε = rT1 x1 + rT2 y1 + xT
1Cy1 − rT1 x2 − rT2 y1 − xT

2Cy1

= rT1 (x1 − x2) + (x1 − x2)TCy1

≤ −(x1 − x2)TCy2 + (x1 − x2)TCy1

≤ (x1 − x2)TC(y1 − y2)

≤ ‖y1 − y2‖2
(x1 − x2)T

‖(x1 − x2)‖2
C

(y1 − y2)
‖y1 − y2‖2

≤ ‖y1 − y2‖2 max
{x ‖x‖2≤1}

max
{y ‖y‖2≤1}

xTCy

≤ δ‖C‖2

The above derivation follows from Assumption 17, and the bound reduces to the matrix
norm using Cauchy-Schwartz inequality.

Not surprisingly, the bound is independent of the local rewards and transition structure
of the agents. Thus it in fact shows that the complexity of achieving a fixed approximation
with a fixed interaction structure is linear in the problem size. However, the bounds are
still exponential in the dimensionality of the space. Notice also that the bound is additive.

6. Experimental Results

We now turn to an empirical analysis of the performance of the algorithm. For this purpose
we use the Mars rover problem described earlier. We compared our algorithm with the
original CSA and with a mixed integer linear program (MILP), derived for Eq. (1) as Petrik
and Zilberstein (2007b) describe. Although Eq. (1) can also be modeled as a linear com-
plementarity problem (LCP) (Murty, 1988; Cottle et al., 1992), we do not evaluate that
option experimentally because LCPs are closely related to MILPs (Rosen, 1986). We expect
these two formulations to exhibit similar performance. We also do not compare to any of
the methods described by Horst and Tuy (1996) and Bennett and Mangasarian (1992) due
to their very different nature and high complexity, and because some of these algorithms
do not provide any optimality guarantees.

In our experiments, we applied the algorithm to randomly generated problem instances
with the same parameters that Becker et al. (2003, 2004) used. Each problem instance
includes 2 rovers and 6 sites. At each site, the rovers can decide to perform an experiment
or to skip the site. Performing experiments takes some time, and all the experiments must
be performed in 15 time units. The time required to perform an experiment is drawn from
a discrete normal distribution with the mean uniformly chosen from 4.0-6.0. The variance
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Algorithm 5: MPBP: Multiagent Planning with Bilinear Programming
Formulate DEC-MDP M as a bilinear program B ; // [Section 2.1]1

B′ ← ReduceDimensionality(B) with ε ≤ 10−4 ; // [Section 4, Appendix B]2

Convert B′ to a semi-compact form ; // [Definition 2]3

h← −∞ ;4

// Presolve step: run Algorithm 1 θ times with random initialization
for i ∈ {1 . . . θ} do5

h← max{h, IterativeBestResponse(B′)} ; // [Algorithm 1]6

BestResponseApprox(B′, ε0) ; // [Algorithm 2]7

is 0.4 of the mean. The local reward for performing an experiment is selected uniformly
from the interval [0.1,1.0] for each site and it is identical for both rovers. The global reward,
received when both rovers perform an experiment on a shared site, is super-additive and is
1/2 of the local reward. The experiments were performed with sites {1, 2, 3, 4, 5} as shared
sites. Typically, the performance of the algorithm degrades with the number of shared sites.
Because the problem with fewer than 5 shared sites–as used in the original CSA paper–were
too easy to solve, we only present results for problems with 5 shared sites. Note that CSA
was used on this problem with an implicit dimensionality reduction due to the use of the
compound events.

In these experiments, the naive dimensionality of Y in Eq. (5) is 6 ∗ 15 ∗ 2 = 180.
This dimensionality can be reduced to be one per each shared site using the automatic
dimensionality reduction procedure. Each dimension then represents the probability that
an experiment on a shared site is performed regardless of the time. Therefore, the dimension
represents the sum of the individual probabilities. Becker et al. (2004) achieved the same
compression using compound events, where each compound event represents the fact that
an experiment is performed on some site regardless of the specific time.

The complete algorithm–Multiagent Planning with Bilinear Programming (MPBP)–is
summarized in Algorithm 5. The automatic dimensionality reduction reduces Y to 5 dimen-
sions. Then, reformulating the problem to a semi-compact form increases the dimensionality
to 6. We experimented with different configurations of the algorithm that differ in the way
the refinements of the pivot point selection is performed. The different methods, described
in Section 3.3, were used to create six configurations as shown in Figure 8. The configuration
C1 corresponds to an earlier version of the algorithm (Petrik & Zilberstein, 2007a).

We executed the algorithm 20 times with each configuration on every problem, randomly
generated according to the distribution described above. The results represent the average
over the random instances. The maximum number of iterations of the algorithm was 200.
Due to rounding errors, we considered any error less than 10−4 to be 0. The algorithm
is implemented in MATLAB release 2007a. The linear solver we used is MOSEK version
5.0. The hardware configuration was Intel Core 2 Duo 1.6 GHz Low Voltage with 2GB
RAM. The time to perform the dimensionality reduction is negligible and not included in
the result.

A direct comparison with CSA was not possible because CSA cannot solve problems
with this dimensionality within a reasonable amount of time. However, in a very similar
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Configuration Feasible Linear bound Cutting plane Presolve [θ]
[Eq. (13)] [Eq. (14)] [Eq. (20)]

C1 0

C2
√

0

C3
√ √

0

C4
√ √

0

C5
√ √

10

C6
√ √

10

Figure 8: The six algorithm configurations that were evaluated. Feasible, linear bound, and
cutting plane refer to methods used to determine the optimal solution.

problem setup with at most 4 shared sites, CSA solved only 76% of the problems, and
the longest solution took approximately 4 hours (Becker et al., 2004). In contrast, MPBP
solved all 200 problems with 4 shared sites optimally in less than 1 second on average, about
10000 times faster. In addition, MPBP returns solutions that are guaranteed to be close to
optimal in the first few iterations. While CSA also returns solutions close to optimal very
rapidly, it takes a very long time to confirm that.

Figure 9 shows the average guaranteed ratio of the optimal solution, achieved as a
function of the number of iterations, that is, points for which g(y) is evaluated. This figure,
as all others, shows the result of the online error bound. This value is guaranteed and is not
based on the optimal solution. This compares the performance of the various configurations
of the algorithm, without using the presolve step. While the optimal solution was typically
discovered in the first few iterations, it takes significantly longer to prove its optimality.

The average of absolute errors in both linear and log scale are shown in Figure 10. These
results indicate that the methods proposed to eliminate the dominated region in searching
for the pivot point can dramatically improve performance. While requiring that the new
pivot points are feasible in Y improves the performance, it is much more significant with
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Figure 9: Guaranteed fraction of optimality according to the online bound.
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Figure 10: Comparison of absolute error of various region elimination methods.

a better approximation of Yh. As expected, the cutting plane elimination is most efficient,
but also most complex.

To evaluate the tradeoffs in the implementation, we also show the average time per
iteration and the average total time in Figure 11. These figures show that the time per
iteration is significantly larger when the cutting plane elimination is used. Overall, the
algorithm is faster when the simpler linear bound is used.

This trend is most likely problem specific. In problems with higher dimensionality, the
more precise cutting plane algorithm may be more efficient. Implementation issues play a
significant role in this problem too, and it is likely that the implementation of Algorithm 4
can be further improved.
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Figure 11: Time per iteration and the total time to solve. With configurations C1 and C2,
the optimal value is not reached with 200 iterations . The figure only shows the
time to compute up to 200 iterations.
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Figure 12: Influence of the presolve method.

Figure 12 shows the influence of using the presolve method. The plots of C3 and C4 are
identical to the plots of C5 and C6 respectively, indicating that the presolve method does
not have any significant influence. This also indicates that a solution that is very close to
optimal is obtained when the values of the initial points are calculated.

We also performed experiments with CPLEX–a state-of-the-art MILP solver on the di-
rect MILP formulation of the DEC-MDP. CPLEX was not able to solve any of the problems
within 30 minutes, no matter how many of the sites were shared. The main reason for this
is that it does not take any advantage of the limited interaction. Nevertheless, it is possible
that some specialized MILP solvers may perform better.

7. Conclusion and Further Work

We present an algorithm that significantly improves the state-of-the-art in solving two-agent
coordination problems. The algorithm takes as input a bilinear program representing the
problem, and solves the problem using a new successive approximation method. It provides
a useful online performance bound that can be used to decide when the approximation is
good enough. The algorithm can take advantage of the limited interaction among the agents,
which is translated into a small dimensionality of the bilinear program. Moreover, using
our approach, it is possible to reduce the dimensionality of such problems automatically,
without extensive modeling effort. This makes it easy to apply our new method in practice.
When applied to DEC-MDPs, the algorithm is much faster than the existing CSA method,
on average reducing computation time by four orders of magnitude. We also show that a
variety of other coordination problems can be treated within this framework.

Besides multiagent coordination problems, bilinear programs have been previously used
to solve problems in operations research and global optimization (Sherali & Shetty, 1980;
White, 1992; Gabriel, Garca-Bertrand, Sahakij, & Conejo, 2005). Global optimization
deals with finding the optimal solutions to problems with multi-extremal objective function.
Solution techniques often share the same idea and are based on cutting plane methods. The
main idea is to iteratively restrict the set of feasible solutions, while improving the incumbent
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solution. Horst and Tuy (1996) provide an excellent overview of these techniques. These
algorithms have different characteristics and cannot be directly compared to the algorithm
we developed. Unlike these traditional algorithms, we focus on providing quickly good
approximate solutions with error bounds. In addition, we exploit the small dimensionality
of the best-response space Y to get tight approximation bounds.

Future work will address several interesting open questions with respect to the bilinear
formulation as well as further improvement of the efficiency of the algorithm. With regard to
the representation, it is yet to be determined whether the anytime behavior can be exploited
when applied to games. That is, it is necessary to verify that an approximate solution to
the bilinear program is also a meaningful approximation of the Nash equilibrium. It is also
important to identify the classes of extensive games that can be efficiently formulated as
bilinear programs.

The algorithm we present can be made more efficient in several ways. In particular, a
significant speedup could be achieved by reducing the size of the individual linear programs.
The programs are solved many times with the same constraints, but a different objective
function. The objective function is always from a small-dimensional space. Therefore, the
problems that are solved are all very similar. In the DEC-MDP domain, one option would
be to use a procedure similar to action elimination. In addition, the performance could be
significantly improved by starting with a tight initial triangulation. In our implementation,
we simply use a single large polyhedron that covers the whole feasible region. A better
approach would be to start with something that approximates the feasible region more
tightly. A tighter approximation of the feasible region could also improve the precision of
the dimensionality reduction procedure. Instead of the naive ellipsis used in Assumption 7,
it is possible to use one that approximates the feasible region as tightly as possible. It is
however very encouraging to see that even without these improvements, the algorithm is
very effective compared with existing solution techniques.
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Appendix A. Proofs

Proof of Proposition 10 The proposition states that in the proposed triangulation, the
sub-polyhedra do not overlap and they cover the whole feasible set Y , given that the pivot
point is in the interior of S.

Proof. We prove the theorem by induction on the number of polyhedron splits that were
performed. The base case is trivial: there is only a single polyhedron, which covers the
whole feasible region.

For the inductive case, we show that for any polyhedron S the sub-polyhedra induced
by the pivot point ŷ cover S and do not overlap. The notation we use is the following: T
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denotes the original polyhedron and ŷ = Tc is the pivot point, where 1Tc = 1 and c ≥ 0.
Note that T is a matrix and c, d, ŷ are vectors, and β is a scalar.

We show that the sub-polyhedra cover the original polyhedron S as follows. Take any
a = Td such that 1Td = 1 and d ≥ 0. We show that there exists a sub-polyhedron that
contains a and has ŷ as a vertex. First, let

T̂ =
(
T
1T

)
This matrix is square and invertible, since the polyhedron is non-empty. To get a rep-
resentation of a that contains ŷ, we show that there is a vector o such that for some i,
o(i) = 0: (

a
1

)
= T̂ d = T̂ o+

(
βŷ
)

o ≥ 0,

for some β > 0. This will ensure that a is in the sub-polyhedron with ŷ with vertex i
replaced by ŷ. The value o depends on β as follows:

o = d− βT̂−1

(
ŷ
1

)
.

This can be achieved by setting:

β = min
i

d(i)
(T̂−1ŷ)(i)

.

Since both d and c = T̂−1ŷ are non-negative. This leaves us with an equation for the
sub-polyhedron containing the point a. Notice that the resulting polyhedron may be of a
smaller dimension than n when o(j) = 0 for some i 6= j.

To show that the polyhedra do not overlap, assume there exists a point a that is com-
mon to the interior of at least two of the polyhedra. That is, assume that a is a convex
combination of the vertices:

a = T3c1 + h1ŷ + β1y1

a = T3c2 + h2ŷ + β2y2,

where T3 represents the set of points common to the two polyhedra, and y1 and y2 represent
the disjoint points in the two polyhedra. The values h1, h2, β1, and β2 are all scalars, while
c1 and c2 are vectors. Notice that the sub-polyhedra differ by at most one vertex. The
coefficients satisfy:

c1 ≥ 0 c2 ≥ 0

h1 ≥ 0 h2 ≥ 0
β1 ≥ 0 β2 ≥ 0

1Tc1 + h1 + β1 = 1 1Tc2 + h2 + β2 = 1

268



A Bilinear Programming Approach for Multiagent Planning

Since the interior of the polyhedron is non-empty, this convex combination is unique.
First assume that h = h1 = h2. Then we can show the following:

a = T3c1 + hŷ + β1y1 = T3c2 + hŷ + β2y2

T3c1 + β1y1 = T3c2 + β2y2

β1y1 = β2y2

β1 = β2 = 0

This holds since y1 and y2 are independent of T3 when the polyhedron is nonempty and
y1 6= y2. The last equality follows from the fact that y1 and y2 are linearly independent.
This is a contradiction, since β1 = β2 = 0 implies that the point a is not in the interior of
two polyhedra, but at their intersection.

Finally, assume WLOG that h1 > h2. Now let ŷ = T3ĉ+ α1y1 + α2y2, for some scalars
α1 ≥ 0 and α2 ≥ 0 that represent a convex combination. We get:

a = T3c1 + h1ŷ + β1y1 = T3(c1 + h1ĉ) + (h1α1 + β1)y1 + h1α2y2

a = T3c2 + h2ŷ + β2y2 = T3(c2 + h2ĉ) + h2α1y1 + (h2α2 + β2)y2.

The coefficients sum to one as shown below.

1T(c1 + h1ĉ) + (h1α1 + β1) + h1α2 = 1Tc1 + β1 + h1(1Tĉ+ α1 + α2) = 1Tc1 + β1 + h1 = 1

1T(c2 + h2ĉ) + α1 + (h2α2 + β2) = 1Tc2 + β2 + h2(1Tĉ+ α1 + α2) = 1Tc2 + β2 + h2 = 1

Now, the convex combination is unique, and therefore the coefficients associated with each
vertex for the two representations of a must be identical. In particular, equating the coef-
ficients for y1 and y2 results in the following:

h1α1 + β1 = h2α1 h1α2 = h2α2 + β2

β1 = h2α1 − h1α1 β2 = h1α2 − h2α2

β1 = α1(h2 − h1) > 0 β2 = α2(h1 − h2) < 0

We have that α1 > 0 and α2 > 0 from the fact that ŷ is in the interior of the polyhedron S.
Then, having β2 ≤ 0 is a contradiction with a being a convex combination of the vertices
of S.

Appendix B. Practical Dimensionality Reduction

In this section we describe an approach to dimensionality reduction that is easy to imple-
ment. Note that there are at least two possible approaches to take advantage of reduced
dimensionality. First, it is possible to use the dimensionality information to limit the algo-
rithm to work only in the significant dimensions of Y . Second, it is possible to modify the
bilinear program to have a small dimensionality. While changing the algorithm may be more
straightforward, it limits the use of the advanced pivot point selection methods described
in Section 3.3. Here, we show how to implement the second option in a straightforward way
using singular value decomposition.
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The dimensionality reduction is applied to the following bilinear program:

maximize
w,x,y,z

rT1 x+ sT1w + xTCy + rT2 y + sT2 z

subject to A1x+B1w = b1

A2y +B2z = b2

w, x, y, z ≥ 0

(23)

Let C = SV TT be a singular value decomposition. Let T = [T1, T2], such that the
singular value of vectors ti in T2 is less than the required ε. Then, a bilinear program with
reduced dimensionality may be defined as follows:

maximize
w,x,ȳ,y,z

rT1 x+ sT1w + xTSV T1ȳ + rT2 y + sT2 z

subject to T1ȳ = y

A1x+B1w = b1

A2y +B2z = b2

w, x, y, z ≥ 0

(24)

Note that ȳ is not constrained to be non-negative. One problematic aspect of reducing the
dimensionality is how to define the initial polyhedron that needs to encompass all feasible
solutions. One option is to make it large enough to contain the set {y ‖y‖2 = 1}, but this
may be too large. Often in practice, it may be more efficient to first triangulate a rough
approximation of the feasible region, and then execute the algorithm on this triangulation.

Appendix C. Sum of Convex and Concave Functions

In this section we show that the best-response function g(y) may not be convex when the
program is not in a semi-compact form. The convexity of the best-response function is
crucial in bounding the approximation error and in eliminating the dominated regions.

We show that when the program is not in a semi-compact form, the best-response
function can we written as a sum of a convex function and a concave function. To show
that consider the following bilinear program.

maximize
w,x,y,z

f = rT1 x+ sT1w + xTCy + rT2 y + sT2 z

subject to A1x+B1w = b1

A2y +B2z = b2

w, x, y, z ≥ 0

(25)

This problem may be reformulated as:

f = max
{y,z (y,z)∈Y }

max
{x,w (x,w)∈X}

rT1 x+ sT1w + xTCy + rT2 y + sT2 z

= max
{y,z (y,z)∈Y }

g′(y) + sT2 z,
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where

g′(y) = max
{x,w (x,w)∈X}

rT1 x+ sT1w + xTCy + rT2 y.

Notice that function g′(y) is convex, because it is a maximum of a set of linear functions.
Since f = max{y (y,z)∈Y } g(y), the best-response function g(y) can be expressed as:

g(y) = max
{z (y,z)∈Y }

g′(y) + sT2 z = g′(y) + max
{z (y,z)∈Y }

sT2 z

= g′(y) + t(y),

where

t(y) = max
{z A2y+B2z=b2, y,z≥0}

sT2 z.

Function g′(y) does not depend on z, and therefore could be taken out of the maximization.
The function t(y) corresponds to a linear program, and its dual using the variable q is:

minimize
q

(b2 −A2y)Tq

subject to BT
2 q ≥ s2

(26)

Therefore:

t(y) = min
{q BT

2 q≥s2}
(b2 −A2y)Tq,

which is a concave function, because it is a minimum of a set of linear functions. The
best-response function can now be written as:

g(y) = g′(y) + t(y),

which is a sum of a convex function and a concave function, also known as a d.c. func-
tion (Horst & Tuy, 1996). Using this property, it is easy to construct a program such that
g(y) will be convex on one part of Y and concave on another part of Y , as the following
example shows. Note that in semi-compact bilinear programs t(y) = 0, which guarantees
the convexity of g(y).

Example 23. Consider the following bilinear program:

maximize
x,y,z

−x+ xy − 2z

subject to −1 ≤ x ≤ 1

y − z ≤ 2

z ≥ 0

(27)

A plot of the best response function for this program is shown in Figure 13.
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Figure 13: A plot of a non-convex best-response function g for a bilinear program, which is

not in a semi-compact form.

References

Allen, M., Petrik, M., & Zilberstein, S. (2008a). Interaction structure and dimensionality in
decentralized problem solving. In Conference on Artificial Intelligence (AAAI), pp.
1440–1441.

Allen, M., Petrik, M., & Zilberstein, S. (2008b). Interaction structure and dimensionality
in decentralized problem solving. Tech. rep. 08-11, Computer Science Department,
University of Massachussetts.

Aras, R. (2008). Mathematical programming methods for decentralized POMDPs. Ph.D.
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