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1 Overview

I address a general class of optimization problems known as
sequential decision making, which involves maximizing the
expected utility of a sequence of actions taken over some fi-
nite or infinite period of time. Rich formal models for sequen-
tial decision making already exist. The Markov Decision Pro-
cess (MDP), in particular, has been shown to provide a very
effective framework with several advantages. The framework
is extremely general in terms of its expressive power — almost
every problem can be mapped easily into an MDP (or one of
its variants). MDPs thus offer a tradeoff between the com-
plexity of modeling and the computational time required to
solve the problem.

Solving sequential decision problems is crucial in a wide
range of domains. Within Al, examples of such problems in-
clude mobile robot control for space exploration, helicopter
control, visual tracking and gesture recognition, and recom-
mender systems. Within operations research, relevant prob-
lems include machine maintenance, scheduling aircraft land-
ings, nuclear power-plant management, and managing blood
inventories [Powell, 2007]. While these problems are easy to
formulate, they can be extremely hard to solve.

There are two significant obstacles in solving practical
problems formulated as MDPs. First, the size of many real-
world problems tends to be very large. This is generally at-
tributed to the “curse of dimensionality” — the exponential
growth of the size of the state space as new features are added
to the model. Second, a precise model of the problem is rarely
available at the design time, or the problem may change fre-
quently after the initial model is created. Both issues can be
addressed by solving the problems approximately, which is
often sufficient in practice. As a result the recent research fo-
cuses on solving MDPs approximately by approximate dy-
namic programming.

Approximate dynamic programming (ADP) approximates
the value function by constraining it to a small subspace gen-
erated by a basis. The value function is then calculated based
on samples of the domain [Powell, 2007]. This value func-
tion approximation not only simplifies the problem but also
increases the robustness of the policy with regard to missing
data. Therefore, an important issue in choosing the basis is
the tradeoff between the precision and certainty. This can be
seen as the bias-variance tradeoff studied in machine learn-
ing.

The main reasons that prevents a wide-spread use of ADP
in practice is that applying the existing methods often re-
quires: 1) deep understanding of the domain and 2) thorough
tweaking of the parameters [Powell, 2007]. These issues are
typically due to a large approximation error. Therefore, to
develop robust algorithms, it will be necessary to understand
the cause of the large approximation error in common set-
tings, and to develop automatic methods for reducing it.

The approach I take in my thesis is based on approximate
linear programming (ALP) [de Farias, 2002], in which the
MDP is formulated as a linear program. This linear program
is then solved approximately by restricting the value func-
tion to a small subspace and sampling only a subset of all the
constraints. I chose approximate linear programming because
it offers better theoretical convergence properties than other
ADP algorithms [de Farias, 2002]. Despite the good theoret-
ical properties, ALP often does not perform well in practical
problem. However, the current understanding of the method
is limited, and therefore I believe there is potential for a sig-
nificant improvement. Even if ALP does not outperform other
ADP algorithms, it is an important algorithm since it can be
used to calculate an admissible heuristic functions [Petrik and
Zilberstein, 2008].

The specific goals I want to achieve in my thesis are the
following:

1. Identify the main challenges faced in practical applica-
tions of ALP. These results can guide the research in im-
proving the important properties of ALP.

2. Develop well-motivated constraint sampling methods
for ALP and reinforcement learning problems in gen-
eral. The new methods will be based on sampling
bounds, unlike the current methods, which are quite ar-
bitrary [de Farias, 2002].

3. Develop methods for generating the basis in some gen-
eral contexts. While it is impossible to develop a good
method that works in all contexts, I will concentrate on
specific problem classes, such as resource management
problems.

Accomplishment of these goals will bring a widespread prac-
tical use of ADP methods closer to reality. For example, given
a robust method, researchers and practitioners outside of Al
will be able to leverage ADP to solve their problems.



2 Results So Far

In practice, it is important that algorithms do not only return
good solutions, but also that they can assess the quality of
the solution. In ADP, the solution quality can be determined
by calculating the error bound on the value function. The
existing error bounds, as I showed, can be inadequate in many
settings [Petrik and Scherrer, 2009]. This in particular occurs
in MDPs with a discount factor close to 1. I have derived new
tighter bounds, based on the results on aggregation in linear
programming.

I have studied an application of ALP to a practical blood
inventory management problem [Powell, 2007] and identi-
fied the key issues with the approximation error [Petrik and
Zilberstein, 2009a]. To better structure the analysis, I divide
the approximation error into three components based on its
cause. The first part is the representational error, which is
the fundamental error caused by limiting the value function
to the approximation subspace. It is the error between the op-
timal value function and its closest possible approximation in
the basis. The second part is the transitional error, which
results from the ALP formulation. ALP is not guaranteed
to find the best possible approximation of the optimal value
function. The third part is the sampling error, caused by
considering only a subset of the constraints in the linear pro-
gram.

One of the main reasons for the poor empirical perfor-
mance of ALP is a very large transitional error. In par-
ticular, this happens when the approximation creates a virtual
loop; that is a transition between states that have very similar
approximation features. A possible approach to reducing this
type of error is to prevent such transitions by requiring spe-
cific structures in the approximation basis [de Farias, 2002;
Petrik and Zilberstein, 2008]. These structures often require
deep analysis of the domain, which is impractical in many
settings. I have therefore recently developed a method that
can reduce this type of error by automatically relaxing cer-
tain constraints. A demonstration of these methods’ effect
for a simple chain problem is shown in Figure 1. Here v*
is the optimal solution, v, is the solution of ALP, and v;
and v9 are solutions of ALP with two proposed types of con-
straint relaxations [Petrik and Zilberstein, 2009b]. Notice that
the approximate value function is an upper bound on the true
value function, and therefore needs to be minimized. The
constraint relaxation method leads to significant reduction in
the approximation error in other domains as well, including
blood inventory management, and other reinforcement learn-
ing benchmark problems.

Finally, to reduce the representational error, it is neces-
sary to design a good approximation basis. In [Petrik, 2007],
I have proposed a new method for automatically creating the
approximation used basis with ADP, which constitutes the ba-
sis selection problem. The method outperforms some other
procedures on simple benchmark problems, but cannot guar-
antee that the basis improves in every iteration. Therefore, us-
ing the convergent properties of approximate linear program-
ming, I developed a basis selection method that is guaranteed
to eventually converge to the optimal solution. This method
still requires that the model is completely specified, and thus
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Figure 1: Value functions on a simple chain problem.

needs to be extended to the general sampled problems.

3 Work Plan

I will continue to extend the analysis of the approximation
error in ALP and propose methods for reducing the error. In
particular, I will concentrate on the following issues:

1. Further analyze the performance of approximate dy-
namic programming methods in large-scale problem set-
tings, such as the blood inventory management problem.

2. The application of ALP to the blood inventory manage-
ment pointed to a large sampling error, which stressed
the importance of good constraint sampling methods. To
develop the sampling methods, I will derive tighter sam-
pling error bounds.

3. The representational error in ALP applications may be
also very large, since the solution is limited to a linear
combination of the approximation features. I will ex-
tend ALP beyond linear combinations of features using
regularization.
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